metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mnist
- autoevaluate/mnist-sample
metrics:
- accuracy
duplicated_from: autoevaluate/image-multi-class-classification
model-index:
- name: autoevaluate/image-multi-class-classification-not-evaluated
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: autoevaluate/mnist-sample
type: autoevaluate/mnist-sample
config: autoevaluate--mnist-sample
split: test
metrics:
- type: accuracy
value: 0.95
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWNiOGQ5MWMyNzQ3NzIwYTgzZWFmZWY4NWU0NTNmODU4ODJmMGVlYTQyMDUxOThiN2E5Mjk4NGI2NTA2ZWQxOCIsInZlcnNpb24iOjF9.dvK-v8T2KBk5eUO0wtlgSJoxpxbBa7-chKUJEWLZ9V1sInPlb0a5MfhFL6Kt5p87Ao7LBFYPwkXx-YSuKCiWCg
- type: f1
value: 0.9496669557378175
name: F1 Macro
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmQ3YzliMzhmNjAwNGNkNTY5NjI3ZDBiZjdiODAwYzMxYTI0OTk3MTViZWMxNjhiZmE4NTA1YzNlNDFkY2ZmYiIsInZlcnNpb24iOjF9.khN-ukrBaD6LCTCnWaOdBdND3h0GfrXzeRHfIIhllRyRAR1nrws-nQFA69AiXBTSouTGNDO3uUz_reIgaITyAw
- type: f1
value: 0.9500000000000001
name: F1 Micro
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmQ0ZDFhMDE4NzljZDdhYmU4YWYwYjlmOWVkMWMxZGE5Yzk5ZDUxYTJlZjEyYjlmMDZiYTgxMzllMjYyNTcxMCIsInZlcnNpb24iOjF9.TkNWWSykXCwcSG64lnqIfFnz8Rq2ZW-Pb1ENZTZ-rmwXJ2TLXdTbikFAIb5_Uu9kDH00X9lo96v1tvb5rI6EDw
- type: f1
value: 0.9496869212452598
name: F1 Weighted
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGJhMjY0OThlYjQxZmM5MTZjZGY1NzBmMGIxOGUxMjk5MDI5MDY0NDUwNzllMjQ2ZTc2YjAzODQwYjhhMTNmMCIsInZlcnNpb24iOjF9.Oh5pYqyTTgubIiLLuBeHByNOCmFTkYP-CQFwO6MkKM7ma2X9_LcopuBDHmQudboiwBmyrrlQ1dzJoNloMoh9AA
- type: precision
value: 0.9478535353535353
name: Precision Macro
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzU2NTgzMDM5ZGNjMjY2YTEyM2MxNDc4MGExYmEyMzFhYjc1ZGI1OTU3ZmI5N2Q1NzIxNmM4YWM2YjA3MzJjYSIsInZlcnNpb24iOjF9.IkFI2xMoiYSuBrg4rI99d72CdCqbllBHLb2mkBxwFePS7QVa-iu5uioEUt5eLvLIh_WeC_H4PR8RX8EJpN06Cg
- type: precision
value: 0.95
name: Precision Micro
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWM1MGRjM2E3MjUyNzdlYjllYWE2YmU1YzQ1ODFiODM1NjNlNGIyNmYxNDI4MmQ4YWMwNmM2YzRkZjFkZTk4ZSIsInZlcnNpb24iOjF9.zjxLWQcGRwLW7m4yZOFgUCkOO81vUPuMqoqRicTdlgillZrI6lqHtDe5HS4lQl3L9NkvzqMKidG25QC2wH_jAg
- type: precision
value: 0.9510353535353535
name: Precision Weighted
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTY3ZGMzMzA4N2Y1NTM0NDBlYzZiNzNhZDBhNDhiNDJjMDg1NmU1OTEyOWRhOTEzYmY0OTNlYjEyYWNkMDhlMiIsInZlcnNpb24iOjF9.qlUvJj53M6miiYj_WRSzM4Dba8zT1ccBbZ7o__O_MZy3i2orc1Bug7A8Jl0xm2jYZ-t5DQtPbucZ6KOlcrF9Cg
- type: recall
value: 0.9530555555555555
name: Recall Macro
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2M3YzJkZGQ4ODIyZGM0NDgyYTE3NDc4MTVjNWM2MDQxNzU5ZTJjODUwNThlNzFiMGM2ZWRkZTAwOWQ3M2RlZSIsInZlcnNpb24iOjF9.KrFqzfPhl1XmsxgrRp37jje-bJf7P6FquIUW9FoZBUFjnqtL0QBxtzHVVOO5PtDP5E3SbvdixSyNfjcgeMhdBw
- type: recall
value: 0.95
name: Recall Micro
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzc3NjI4ODQyZGJjMDZjMGQ1YTI0NTdjMTJkMmVjOGExNDEzZjYzNmEwNWU3ZDBlNGIyNDMyZTE3MTM0MGE1ZCIsInZlcnNpb24iOjF9.tw0oVqYRb7AGF5jQzDzj3rOx96-KbnbkbhmBv8cn6hlvFktSQtn-87bTK7esDn3oMLlrvxpiIxDAVrTivzpqBA
- type: recall
value: 0.95
name: Recall Weighted
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmFjNjYyNmJmZjk0ZWZlZjZlODc0NDJjYjI1OTk0NTQ3NzdiOTY1ZmQ0MjVmODRjN2M5NzUyNGEwMWMwMTRlNSIsInZlcnNpb24iOjF9.qSk10iM348bjetzTla7MqbVcxyo5TpcIWoJR5N-HE5tiZ0mFwJ5RuL0YqSL_M_kgLdfb5TucnvoC_D6vDri8BA
- type: loss
value: 0.12428419291973114
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjZlMzk5NTEyN2E0N2VjOWUwNjg2NGU5ZDI0NDdlMWU1YzM0ZTAzZmQ0OWY3ZGJkMTJlNjM1ZmM2NzlhMWFkMiIsInZlcnNpb24iOjF9.WH9IyFFJbDxH-G788sFs3tMGLyVP5qky-x9PW9j7xE5qvdgwgoS1Kpy5tNtnP3ERdCWT3ZwdeXDIT4HoPZ4GBw
image-classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the mnist dataset. It achieves the following results on the evaluation set:
- Loss: 0.0556
- Accuracy: 0.9833
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3743 | 1.0 | 422 | 0.0556 | 0.9833 |
Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1