--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist - autoevaluate/mnist-sample metrics: - accuracy duplicated_from: autoevaluate/image-multi-class-classification model-index: - name: autoevaluate/image-multi-class-classification-not-evaluated results: - task: type: image-classification name: Image Classification dataset: name: autoevaluate/mnist-sample type: autoevaluate/mnist-sample config: autoevaluate--mnist-sample split: test metrics: - type: accuracy value: 0.95 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWNiOGQ5MWMyNzQ3NzIwYTgzZWFmZWY4NWU0NTNmODU4ODJmMGVlYTQyMDUxOThiN2E5Mjk4NGI2NTA2ZWQxOCIsInZlcnNpb24iOjF9.dvK-v8T2KBk5eUO0wtlgSJoxpxbBa7-chKUJEWLZ9V1sInPlb0a5MfhFL6Kt5p87Ao7LBFYPwkXx-YSuKCiWCg - type: f1 value: 0.9496669557378175 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmQ3YzliMzhmNjAwNGNkNTY5NjI3ZDBiZjdiODAwYzMxYTI0OTk3MTViZWMxNjhiZmE4NTA1YzNlNDFkY2ZmYiIsInZlcnNpb24iOjF9.khN-ukrBaD6LCTCnWaOdBdND3h0GfrXzeRHfIIhllRyRAR1nrws-nQFA69AiXBTSouTGNDO3uUz_reIgaITyAw - type: f1 value: 0.9500000000000001 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmQ0ZDFhMDE4NzljZDdhYmU4YWYwYjlmOWVkMWMxZGE5Yzk5ZDUxYTJlZjEyYjlmMDZiYTgxMzllMjYyNTcxMCIsInZlcnNpb24iOjF9.TkNWWSykXCwcSG64lnqIfFnz8Rq2ZW-Pb1ENZTZ-rmwXJ2TLXdTbikFAIb5_Uu9kDH00X9lo96v1tvb5rI6EDw - type: f1 value: 0.9496869212452598 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGJhMjY0OThlYjQxZmM5MTZjZGY1NzBmMGIxOGUxMjk5MDI5MDY0NDUwNzllMjQ2ZTc2YjAzODQwYjhhMTNmMCIsInZlcnNpb24iOjF9.Oh5pYqyTTgubIiLLuBeHByNOCmFTkYP-CQFwO6MkKM7ma2X9_LcopuBDHmQudboiwBmyrrlQ1dzJoNloMoh9AA - type: precision value: 0.9478535353535353 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzU2NTgzMDM5ZGNjMjY2YTEyM2MxNDc4MGExYmEyMzFhYjc1ZGI1OTU3ZmI5N2Q1NzIxNmM4YWM2YjA3MzJjYSIsInZlcnNpb24iOjF9.IkFI2xMoiYSuBrg4rI99d72CdCqbllBHLb2mkBxwFePS7QVa-iu5uioEUt5eLvLIh_WeC_H4PR8RX8EJpN06Cg - type: precision value: 0.95 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWM1MGRjM2E3MjUyNzdlYjllYWE2YmU1YzQ1ODFiODM1NjNlNGIyNmYxNDI4MmQ4YWMwNmM2YzRkZjFkZTk4ZSIsInZlcnNpb24iOjF9.zjxLWQcGRwLW7m4yZOFgUCkOO81vUPuMqoqRicTdlgillZrI6lqHtDe5HS4lQl3L9NkvzqMKidG25QC2wH_jAg - type: precision value: 0.9510353535353535 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTY3ZGMzMzA4N2Y1NTM0NDBlYzZiNzNhZDBhNDhiNDJjMDg1NmU1OTEyOWRhOTEzYmY0OTNlYjEyYWNkMDhlMiIsInZlcnNpb24iOjF9.qlUvJj53M6miiYj_WRSzM4Dba8zT1ccBbZ7o__O_MZy3i2orc1Bug7A8Jl0xm2jYZ-t5DQtPbucZ6KOlcrF9Cg - type: recall value: 0.9530555555555555 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2M3YzJkZGQ4ODIyZGM0NDgyYTE3NDc4MTVjNWM2MDQxNzU5ZTJjODUwNThlNzFiMGM2ZWRkZTAwOWQ3M2RlZSIsInZlcnNpb24iOjF9.KrFqzfPhl1XmsxgrRp37jje-bJf7P6FquIUW9FoZBUFjnqtL0QBxtzHVVOO5PtDP5E3SbvdixSyNfjcgeMhdBw - type: recall value: 0.95 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzc3NjI4ODQyZGJjMDZjMGQ1YTI0NTdjMTJkMmVjOGExNDEzZjYzNmEwNWU3ZDBlNGIyNDMyZTE3MTM0MGE1ZCIsInZlcnNpb24iOjF9.tw0oVqYRb7AGF5jQzDzj3rOx96-KbnbkbhmBv8cn6hlvFktSQtn-87bTK7esDn3oMLlrvxpiIxDAVrTivzpqBA - type: recall value: 0.95 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmFjNjYyNmJmZjk0ZWZlZjZlODc0NDJjYjI1OTk0NTQ3NzdiOTY1ZmQ0MjVmODRjN2M5NzUyNGEwMWMwMTRlNSIsInZlcnNpb24iOjF9.qSk10iM348bjetzTla7MqbVcxyo5TpcIWoJR5N-HE5tiZ0mFwJ5RuL0YqSL_M_kgLdfb5TucnvoC_D6vDri8BA - type: loss value: 0.12428419291973114 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjZlMzk5NTEyN2E0N2VjOWUwNjg2NGU5ZDI0NDdlMWU1YzM0ZTAzZmQ0OWY3ZGJkMTJlNjM1ZmM2NzlhMWFkMiIsInZlcnNpb24iOjF9.WH9IyFFJbDxH-G788sFs3tMGLyVP5qky-x9PW9j7xE5qvdgwgoS1Kpy5tNtnP3ERdCWT3ZwdeXDIT4HoPZ4GBw --- # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1