|
--- |
|
library_name: transformers |
|
language: |
|
- bem |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- BIG-C/BEMBA |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Bemba - Beijuka Bruno |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: BEMBA |
|
type: BIG-C/BEMBA |
|
args: 'config: bemba, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.4232887826124087 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Bemba - Beijuka Bruno |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the BEMBA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2836 |
|
- Model Preparation Time: 0.0075 |
|
- Wer: 0.4233 |
|
- Cer: 0.1171 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:------:|:------:| |
|
| 0.9215 | 1.0 | 2546 | 0.6730 | 0.0075 | 0.4818 | 0.1286 | |
|
| 0.5391 | 2.0 | 5092 | 0.6217 | 0.0075 | 0.4434 | 0.1188 | |
|
| 0.366 | 3.0 | 7638 | 0.6423 | 0.0075 | 0.4449 | 0.1222 | |
|
| 0.2213 | 4.0 | 10184 | 0.6881 | 0.0075 | 0.4430 | 0.1281 | |
|
| 0.1152 | 5.0 | 12730 | 0.7444 | 0.0075 | 0.4607 | 0.1329 | |
|
| 0.059 | 6.0 | 15276 | 0.8259 | 0.0075 | 0.4572 | 0.1283 | |
|
| 0.0336 | 7.0 | 17822 | 0.8798 | 0.0075 | 0.4313 | 0.1186 | |
|
| 0.0233 | 8.0 | 20368 | 0.9262 | 0.0075 | 0.4321 | 0.1196 | |
|
| 0.0182 | 9.0 | 22914 | 0.9683 | 0.0075 | 0.4333 | 0.1230 | |
|
| 0.0159 | 10.0 | 25460 | 0.9992 | 0.0075 | 0.4301 | 0.1215 | |
|
| 0.0123 | 11.0 | 28006 | 1.0515 | 0.0075 | 0.4279 | 0.1191 | |
|
| 0.0114 | 12.0 | 30552 | 1.0733 | 0.0075 | 0.4296 | 0.1154 | |
|
| 0.0105 | 13.0 | 33098 | 1.0854 | 0.0075 | 0.4277 | 0.1171 | |
|
| 0.0096 | 14.0 | 35644 | 1.1244 | 0.0075 | 0.4228 | 0.1156 | |
|
| 0.0084 | 15.0 | 38190 | 1.1250 | 0.0075 | 0.4284 | 0.1201 | |
|
| 0.0082 | 16.0 | 40736 | 1.1691 | 0.0075 | 0.4163 | 0.1142 | |
|
| 0.0075 | 17.0 | 43282 | 1.1766 | 0.0075 | 0.4172 | 0.1140 | |
|
| 0.0073 | 18.0 | 45828 | 1.1734 | 0.0075 | 0.4323 | 0.1197 | |
|
| 0.0067 | 19.0 | 48374 | 1.1985 | 0.0075 | 0.4201 | 0.1170 | |
|
| 0.006 | 20.0 | 50920 | 1.2099 | 0.0075 | 0.4297 | 0.1192 | |
|
| 0.0057 | 21.0 | 53466 | 1.2517 | 0.0075 | 0.4293 | 0.1197 | |
|
| 0.0058 | 22.0 | 56012 | 1.2351 | 0.0075 | 0.4292 | 0.1202 | |
|
| 0.0057 | 23.0 | 58558 | 1.2380 | 0.0075 | 0.4362 | 0.1195 | |
|
| 0.0048 | 24.0 | 61104 | 1.2756 | 0.0075 | 0.4202 | 0.1165 | |
|
| 0.0049 | 25.0 | 63650 | 1.2816 | 0.0075 | 0.4185 | 0.1156 | |
|
| 0.0046 | 26.0 | 66196 | 1.3191 | 0.0075 | 0.4116 | 0.1115 | |
|
| 0.0041 | 27.0 | 68742 | 1.3041 | 0.0075 | 0.4187 | 0.1160 | |
|
| 0.0041 | 28.0 | 71288 | 1.3195 | 0.0075 | 0.4193 | 0.1144 | |
|
| 0.0042 | 29.0 | 73834 | 1.3229 | 0.0075 | 0.4215 | 0.1187 | |
|
| 0.0033 | 30.0 | 76380 | 1.3282 | 0.0075 | 0.4192 | 0.1159 | |
|
| 0.0035 | 31.0 | 78926 | 1.3424 | 0.0075 | 0.4256 | 0.1196 | |
|
| 0.0033 | 32.0 | 81472 | 1.3538 | 0.0075 | 0.4217 | 0.1164 | |
|
| 0.0072 | 33.0 | 84018 | 1.3673 | 0.0075 | 0.4141 | 0.1148 | |
|
| 0.0041 | 34.0 | 86564 | 1.3853 | 0.0075 | 0.4195 | 0.1154 | |
|
| 0.0035 | 35.0 | 89110 | 1.3809 | 0.0075 | 0.4145 | 0.1146 | |
|
| 0.0034 | 36.0 | 91656 | 1.3930 | 0.0075 | 0.4170 | 0.1158 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|