Beijuka's picture
End of training
7d314a4 verified
metadata
library_name: transformers
language:
  - bem
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - BIG-C/BEMBA
metrics:
  - wer
model-index:
  - name: Whisper Small Bemba - Beijuka Bruno
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BEMBA
          type: BIG-C/BEMBA
          args: 'config: bemba, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.4232887826124087

Whisper Small Bemba - Beijuka Bruno

This model is a fine-tuned version of openai/whisper-small on the BEMBA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2836
  • Model Preparation Time: 0.0075
  • Wer: 0.4233
  • Cer: 0.1171

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
0.9215 1.0 2546 0.6730 0.0075 0.4818 0.1286
0.5391 2.0 5092 0.6217 0.0075 0.4434 0.1188
0.366 3.0 7638 0.6423 0.0075 0.4449 0.1222
0.2213 4.0 10184 0.6881 0.0075 0.4430 0.1281
0.1152 5.0 12730 0.7444 0.0075 0.4607 0.1329
0.059 6.0 15276 0.8259 0.0075 0.4572 0.1283
0.0336 7.0 17822 0.8798 0.0075 0.4313 0.1186
0.0233 8.0 20368 0.9262 0.0075 0.4321 0.1196
0.0182 9.0 22914 0.9683 0.0075 0.4333 0.1230
0.0159 10.0 25460 0.9992 0.0075 0.4301 0.1215
0.0123 11.0 28006 1.0515 0.0075 0.4279 0.1191
0.0114 12.0 30552 1.0733 0.0075 0.4296 0.1154
0.0105 13.0 33098 1.0854 0.0075 0.4277 0.1171
0.0096 14.0 35644 1.1244 0.0075 0.4228 0.1156
0.0084 15.0 38190 1.1250 0.0075 0.4284 0.1201
0.0082 16.0 40736 1.1691 0.0075 0.4163 0.1142
0.0075 17.0 43282 1.1766 0.0075 0.4172 0.1140
0.0073 18.0 45828 1.1734 0.0075 0.4323 0.1197
0.0067 19.0 48374 1.1985 0.0075 0.4201 0.1170
0.006 20.0 50920 1.2099 0.0075 0.4297 0.1192
0.0057 21.0 53466 1.2517 0.0075 0.4293 0.1197
0.0058 22.0 56012 1.2351 0.0075 0.4292 0.1202
0.0057 23.0 58558 1.2380 0.0075 0.4362 0.1195
0.0048 24.0 61104 1.2756 0.0075 0.4202 0.1165
0.0049 25.0 63650 1.2816 0.0075 0.4185 0.1156
0.0046 26.0 66196 1.3191 0.0075 0.4116 0.1115
0.0041 27.0 68742 1.3041 0.0075 0.4187 0.1160
0.0041 28.0 71288 1.3195 0.0075 0.4193 0.1144
0.0042 29.0 73834 1.3229 0.0075 0.4215 0.1187
0.0033 30.0 76380 1.3282 0.0075 0.4192 0.1159
0.0035 31.0 78926 1.3424 0.0075 0.4256 0.1196
0.0033 32.0 81472 1.3538 0.0075 0.4217 0.1164
0.0072 33.0 84018 1.3673 0.0075 0.4141 0.1148
0.0041 34.0 86564 1.3853 0.0075 0.4195 0.1154
0.0035 35.0 89110 1.3809 0.0075 0.4145 0.1146
0.0034 36.0 91656 1.3930 0.0075 0.4170 0.1158

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.19.1