sulaimank's picture
End of training
05d088b verified
metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-lg-CV-Fleurs-filtered-100hrs-v12
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: lg_ug
          split: test
          args: lg_ug
        metrics:
          - name: Wer
            type: wer
            value: 0.43848396501457726

w2v-bert-2.0-lg-CV-Fleurs-filtered-100hrs-v12

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4980
  • Wer: 0.4385
  • Cer: 0.0852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 70
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9834 1.0 7125 0.3827 0.4584 0.0921
0.1914 2.0 14250 0.3460 0.4394 0.0837
0.165 3.0 21375 0.3377 0.4375 0.0827
0.1519 4.0 28500 0.3337 0.4246 0.0805
0.1458 5.0 35625 0.3242 0.4234 0.0789
0.1413 6.0 42750 0.3294 0.4329 0.0816
0.1395 7.0 49875 0.3441 0.4431 0.0866
0.1325 8.0 57000 0.3263 0.4332 0.0867
0.1191 9.0 64125 0.3278 0.4065 0.0788
0.1075 10.0 71250 0.3203 0.4418 0.0808
0.0974 11.0 78375 0.3304 0.4036 0.0771
0.0892 12.0 85500 0.3307 0.4263 0.0819
0.0802 13.0 92625 0.3530 0.4107 0.0785
0.0728 14.0 99750 0.3478 0.4156 0.0795
0.0632 15.0 106875 0.3620 0.4052 0.0787
0.0567 16.0 114000 0.3620 0.4219 0.0796
0.0484 17.0 121125 0.4135 0.4114 0.0787
0.0423 18.0 128250 0.4220 0.4186 0.0814
0.0358 19.0 135375 0.4476 0.4303 0.0825
0.0311 20.0 142500 0.4913 0.4134 0.0806
0.0277 21.0 149625 0.4910 0.4411 0.0850
0.0238 22.0 156750 0.5097 0.4269 0.0821
0.0214 23.0 163875 0.4755 0.4248 0.0837
0.0194 24.0 171000 0.4839 0.4249 0.0826
0.0178 25.0 178125 0.5302 0.4294 0.0828
0.016 26.0 185250 0.4980 0.4385 0.0852

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3