File size: 3,740 Bytes
bbbe994
 
05d088b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbbe994
 
05d088b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: w2v-bert-2.0-lg-CV-Fleurs-filtered-100hrs-v12
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: fleurs
      type: fleurs
      config: lg_ug
      split: test
      args: lg_ug
    metrics:
    - name: Wer
      type: wer
      value: 0.43848396501457726
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-lg-CV-Fleurs-filtered-100hrs-v12

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4980
- Wer: 0.4385
- Cer: 0.0852

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 70
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
| 0.9834        | 1.0   | 7125   | 0.3827          | 0.4584 | 0.0921 |
| 0.1914        | 2.0   | 14250  | 0.3460          | 0.4394 | 0.0837 |
| 0.165         | 3.0   | 21375  | 0.3377          | 0.4375 | 0.0827 |
| 0.1519        | 4.0   | 28500  | 0.3337          | 0.4246 | 0.0805 |
| 0.1458        | 5.0   | 35625  | 0.3242          | 0.4234 | 0.0789 |
| 0.1413        | 6.0   | 42750  | 0.3294          | 0.4329 | 0.0816 |
| 0.1395        | 7.0   | 49875  | 0.3441          | 0.4431 | 0.0866 |
| 0.1325        | 8.0   | 57000  | 0.3263          | 0.4332 | 0.0867 |
| 0.1191        | 9.0   | 64125  | 0.3278          | 0.4065 | 0.0788 |
| 0.1075        | 10.0  | 71250  | 0.3203          | 0.4418 | 0.0808 |
| 0.0974        | 11.0  | 78375  | 0.3304          | 0.4036 | 0.0771 |
| 0.0892        | 12.0  | 85500  | 0.3307          | 0.4263 | 0.0819 |
| 0.0802        | 13.0  | 92625  | 0.3530          | 0.4107 | 0.0785 |
| 0.0728        | 14.0  | 99750  | 0.3478          | 0.4156 | 0.0795 |
| 0.0632        | 15.0  | 106875 | 0.3620          | 0.4052 | 0.0787 |
| 0.0567        | 16.0  | 114000 | 0.3620          | 0.4219 | 0.0796 |
| 0.0484        | 17.0  | 121125 | 0.4135          | 0.4114 | 0.0787 |
| 0.0423        | 18.0  | 128250 | 0.4220          | 0.4186 | 0.0814 |
| 0.0358        | 19.0  | 135375 | 0.4476          | 0.4303 | 0.0825 |
| 0.0311        | 20.0  | 142500 | 0.4913          | 0.4134 | 0.0806 |
| 0.0277        | 21.0  | 149625 | 0.4910          | 0.4411 | 0.0850 |
| 0.0238        | 22.0  | 156750 | 0.5097          | 0.4269 | 0.0821 |
| 0.0214        | 23.0  | 163875 | 0.4755          | 0.4248 | 0.0837 |
| 0.0194        | 24.0  | 171000 | 0.4839          | 0.4249 | 0.0826 |
| 0.0178        | 25.0  | 178125 | 0.5302          | 0.4294 | 0.0828 |
| 0.016         | 26.0  | 185250 | 0.4980          | 0.4385 | 0.0852 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3