|
import unittest |
|
import torch as T |
|
|
|
from TTS.tts.layers.tacotron import Prenet, CBHG, Decoder, Encoder |
|
from TTS.tts.layers.losses import L1LossMasked, SSIMLoss |
|
from TTS.tts.utils.generic_utils import sequence_mask |
|
|
|
|
|
|
|
|
|
class PrenetTests(unittest.TestCase): |
|
def test_in_out(self): |
|
layer = Prenet(128, out_features=[256, 128]) |
|
dummy_input = T.rand(4, 128) |
|
|
|
print(layer) |
|
output = layer(dummy_input) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 128 |
|
|
|
|
|
class CBHGTests(unittest.TestCase): |
|
def test_in_out(self): |
|
|
|
layer = self.cbhg = CBHG( |
|
128, |
|
K=8, |
|
conv_bank_features=80, |
|
conv_projections=[160, 128], |
|
highway_features=80, |
|
gru_features=80, |
|
num_highways=4) |
|
|
|
dummy_input = T.rand(4, 128, 8) |
|
|
|
print(layer) |
|
output = layer(dummy_input) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 8 |
|
assert output.shape[2] == 160 |
|
|
|
|
|
class DecoderTests(unittest.TestCase): |
|
@staticmethod |
|
def test_in_out(): |
|
layer = Decoder( |
|
in_channels=256, |
|
frame_channels=80, |
|
r=2, |
|
memory_size=4, |
|
attn_windowing=False, |
|
attn_norm="sigmoid", |
|
attn_K=5, |
|
attn_type="original", |
|
prenet_type='original', |
|
prenet_dropout=True, |
|
forward_attn=True, |
|
trans_agent=True, |
|
forward_attn_mask=True, |
|
location_attn=True, |
|
separate_stopnet=True) |
|
dummy_input = T.rand(4, 8, 256) |
|
dummy_memory = T.rand(4, 2, 80) |
|
|
|
output, alignment, stop_tokens = layer( |
|
dummy_input, dummy_memory, mask=None) |
|
|
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 80, "size not {}".format(output.shape[1]) |
|
assert output.shape[2] == 2, "size not {}".format(output.shape[2]) |
|
assert stop_tokens.shape[0] == 4 |
|
|
|
class EncoderTests(unittest.TestCase): |
|
def test_in_out(self): |
|
layer = Encoder(128) |
|
dummy_input = T.rand(4, 8, 128) |
|
|
|
print(layer) |
|
output = layer(dummy_input) |
|
print(output.shape) |
|
assert output.shape[0] == 4 |
|
assert output.shape[1] == 8 |
|
assert output.shape[2] == 256 |
|
|
|
|
|
class L1LossMaskedTests(unittest.TestCase): |
|
def test_in_out(self): |
|
|
|
layer = L1LossMasked(seq_len_norm=False) |
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.ones(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 0.0 |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 1.0, "1.0 vs {}".format(output.item()) |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert output.item() == 1.0, "1.0 vs {}".format(output.item()) |
|
|
|
dummy_input = T.rand(4, 8, 128).float() |
|
dummy_target = dummy_input.detach() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert output.item() == 0, "0 vs {}".format(output.item()) |
|
|
|
|
|
|
|
layer = L1LossMasked(seq_len_norm=True) |
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.ones(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 0.0 |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 1.0, "1.0 vs {}".format(output.item()) |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item()) |
|
|
|
dummy_input = T.rand(4, 8, 128).float() |
|
dummy_target = dummy_input.detach() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert output.item() == 0, "0 vs {}".format(output.item()) |
|
|
|
|
|
class SSIMLossTests(unittest.TestCase): |
|
def test_in_out(self): |
|
|
|
layer = SSIMLoss() |
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.ones(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 0.0 |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert abs(output.item() - 1.0) < 1e-4 , "1.0 vs {}".format(output.item()) |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert abs(output.item() - 1.0) < 1e-4, "1.0 vs {}".format(output.item()) |
|
|
|
dummy_input = T.rand(4, 8, 128).float() |
|
dummy_target = dummy_input.detach() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert output.item() == 0, "0 vs {}".format(output.item()) |
|
|
|
|
|
|
|
layer = L1LossMasked(seq_len_norm=True) |
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.ones(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 0.0 |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.ones(4) * 8).long() |
|
output = layer(dummy_input, dummy_target, dummy_length) |
|
assert output.item() == 1.0, "1.0 vs {}".format(output.item()) |
|
|
|
|
|
dummy_input = T.ones(4, 8, 128).float() |
|
dummy_target = T.zeros(4, 8, 128).float() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item()) |
|
|
|
dummy_input = T.rand(4, 8, 128).float() |
|
dummy_target = dummy_input.detach() |
|
dummy_length = (T.arange(5, 9)).long() |
|
mask = ( |
|
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2) |
|
output = layer(dummy_input + mask, dummy_target, dummy_length) |
|
assert output.item() == 0, "0 vs {}".format(output.item()) |
|
|
|
|