File size: 8,598 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import unittest
import torch as T

from TTS.tts.layers.tacotron import Prenet, CBHG, Decoder, Encoder
from TTS.tts.layers.losses import L1LossMasked, SSIMLoss
from TTS.tts.utils.generic_utils import sequence_mask

# pylint: disable=unused-variable


class PrenetTests(unittest.TestCase):
    def test_in_out(self):  #pylint: disable=no-self-use
        layer = Prenet(128, out_features=[256, 128])
        dummy_input = T.rand(4, 128)

        print(layer)
        output = layer(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 128


class CBHGTests(unittest.TestCase):
    def test_in_out(self):
        #pylint: disable=attribute-defined-outside-init
        layer = self.cbhg = CBHG(
            128,
            K=8,
            conv_bank_features=80,
            conv_projections=[160, 128],
            highway_features=80,
            gru_features=80,
            num_highways=4)
        # B x D x T
        dummy_input = T.rand(4, 128, 8)

        print(layer)
        output = layer(dummy_input)
        assert output.shape[0] == 4
        assert output.shape[1] == 8
        assert output.shape[2] == 160


class DecoderTests(unittest.TestCase):
    @staticmethod
    def test_in_out():
        layer = Decoder(
            in_channels=256,
            frame_channels=80,
            r=2,
            memory_size=4,
            attn_windowing=False,
            attn_norm="sigmoid",
            attn_K=5,
            attn_type="original",
            prenet_type='original',
            prenet_dropout=True,
            forward_attn=True,
            trans_agent=True,
            forward_attn_mask=True,
            location_attn=True,
            separate_stopnet=True)
        dummy_input = T.rand(4, 8, 256)
        dummy_memory = T.rand(4, 2, 80)

        output, alignment, stop_tokens = layer(
            dummy_input, dummy_memory, mask=None)

        assert output.shape[0] == 4
        assert output.shape[1] == 80, "size not {}".format(output.shape[1])
        assert output.shape[2] == 2, "size not {}".format(output.shape[2])
        assert stop_tokens.shape[0] == 4

class EncoderTests(unittest.TestCase):
    def test_in_out(self):  #pylint: disable=no-self-use
        layer = Encoder(128)
        dummy_input = T.rand(4, 8, 128)

        print(layer)
        output = layer(dummy_input)
        print(output.shape)
        assert output.shape[0] == 4
        assert output.shape[1] == 8
        assert output.shape[2] == 256  # 128 * 2 BiRNN


class L1LossMaskedTests(unittest.TestCase):
    def test_in_out(self):  #pylint: disable=no-self-use
        # test input == target
        layer = L1LossMasked(seq_len_norm=False)
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.ones(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 0.0

        # test input != target
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.item())

        # test if padded values of input makes any difference
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.item())

        dummy_input = T.rand(4, 8, 128).float()
        dummy_target = dummy_input.detach()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 0, "0 vs {}".format(output.item())

        # seq_len_norm = True
        # test input == target
        layer = L1LossMasked(seq_len_norm=True)
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.ones(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 0.0

        # test input != target
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.item())

        # test if padded values of input makes any difference
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item())

        dummy_input = T.rand(4, 8, 128).float()
        dummy_target = dummy_input.detach()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 0, "0 vs {}".format(output.item())


class SSIMLossTests(unittest.TestCase):
    def test_in_out(self):  #pylint: disable=no-self-use
        # test input == target
        layer = SSIMLoss()
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.ones(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 0.0

        # test input != target
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert abs(output.item() - 1.0) < 1e-4 , "1.0 vs {}".format(output.item())

        # test if padded values of input makes any difference
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert abs(output.item() - 1.0) < 1e-4, "1.0 vs {}".format(output.item())

        dummy_input = T.rand(4, 8, 128).float()
        dummy_target = dummy_input.detach()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 0, "0 vs {}".format(output.item())

        # seq_len_norm = True
        # test input == target
        layer = L1LossMasked(seq_len_norm=True)
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.ones(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 0.0

        # test input != target
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.item())

        # test if padded values of input makes any difference
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item())

        dummy_input = T.rand(4, 8, 128).float()
        dummy_target = dummy_input.detach()
        dummy_length = (T.arange(5, 9)).long()
        mask = (
            (sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 0, "0 vs {}".format(output.item())