|
import os |
|
import unittest |
|
|
|
from tests import get_tests_input_path, get_tests_output_path, get_tests_path |
|
|
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.io import load_config |
|
|
|
TESTS_PATH = get_tests_path() |
|
OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") |
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") |
|
|
|
os.makedirs(OUT_PATH, exist_ok=True) |
|
conf = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) |
|
|
|
|
|
|
|
class TestAudio(unittest.TestCase): |
|
def __init__(self, *args, **kwargs): |
|
super(TestAudio, self).__init__(*args, **kwargs) |
|
self.ap = AudioProcessor(**conf.audio) |
|
|
|
def test_audio_synthesis(self): |
|
""" 1. load wav |
|
2. set normalization parameters |
|
3. extract mel-spec |
|
4. invert to wav and save the output |
|
""" |
|
print(" > Sanity check for the process wav -> mel -> wav") |
|
|
|
def _test(max_norm, signal_norm, symmetric_norm, clip_norm): |
|
self.ap.max_norm = max_norm |
|
self.ap.signal_norm = signal_norm |
|
self.ap.symmetric_norm = symmetric_norm |
|
self.ap.clip_norm = clip_norm |
|
wav = self.ap.load_wav(WAV_FILE) |
|
mel = self.ap.melspectrogram(wav) |
|
wav_ = self.ap.inv_melspectrogram(mel) |
|
file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\ |
|
.format(max_norm, signal_norm, symmetric_norm, clip_norm) |
|
print(" | > Creating wav file at : ", file_name) |
|
self.ap.save_wav(wav_, OUT_PATH + file_name) |
|
|
|
|
|
_test(1., False, False, False) |
|
_test(1., True, False, False) |
|
_test(1., True, True, False) |
|
_test(1., True, False, True) |
|
_test(1., True, True, True) |
|
|
|
_test(4., False, False, False) |
|
_test(4., True, False, False) |
|
_test(4., True, True, False) |
|
_test(4., True, False, True) |
|
_test(4., True, True, True) |
|
|
|
def test_normalize(self): |
|
"""Check normalization and denormalization for range values and consistency """ |
|
print(" > Testing normalization and denormalization.") |
|
wav = self.ap.load_wav(WAV_FILE) |
|
wav = self.ap.sound_norm(wav) |
|
self.ap.signal_norm = False |
|
x = self.ap.melspectrogram(wav) |
|
x_old = x |
|
|
|
self.ap.signal_norm = True |
|
self.ap.symmetric_norm = False |
|
self.ap.clip_norm = False |
|
self.ap.max_norm = 4.0 |
|
x_norm = self.ap.normalize(x) |
|
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") |
|
assert (x_old - x).sum() == 0 |
|
|
|
assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() |
|
assert x_norm.min() >= 0 - 1, x_norm.min() |
|
|
|
x_ = self.ap.denormalize(x_norm) |
|
assert (x - x_).sum() < 1e-3, (x - x_).mean() |
|
|
|
self.ap.signal_norm = True |
|
self.ap.symmetric_norm = False |
|
self.ap.clip_norm = True |
|
self.ap.max_norm = 4.0 |
|
x_norm = self.ap.normalize(x) |
|
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") |
|
|
|
|
|
assert (x_old - x).sum() == 0 |
|
|
|
assert x_norm.max() <= self.ap.max_norm, x_norm.max() |
|
assert x_norm.min() >= 0, x_norm.min() |
|
|
|
x_ = self.ap.denormalize(x_norm) |
|
assert (x - x_).sum() < 1e-3, (x - x_).mean() |
|
|
|
self.ap.signal_norm = True |
|
self.ap.symmetric_norm = True |
|
self.ap.clip_norm = False |
|
self.ap.max_norm = 4.0 |
|
x_norm = self.ap.normalize(x) |
|
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") |
|
|
|
|
|
assert (x_old - x).sum() == 0 |
|
|
|
assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max() |
|
assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min() |
|
assert x_norm.min() <= 0, x_norm.min() |
|
|
|
x_ = self.ap.denormalize(x_norm) |
|
assert (x - x_).sum() < 1e-3, (x - x_).mean() |
|
|
|
self.ap.signal_norm = True |
|
self.ap.symmetric_norm = True |
|
self.ap.clip_norm = True |
|
self.ap.max_norm = 4.0 |
|
x_norm = self.ap.normalize(x) |
|
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") |
|
|
|
|
|
assert (x_old - x).sum() == 0 |
|
|
|
assert x_norm.max() <= self.ap.max_norm, x_norm.max() |
|
assert x_norm.min() >= -self.ap.max_norm, x_norm.min() |
|
assert x_norm.min() <= 0, x_norm.min() |
|
|
|
x_ = self.ap.denormalize(x_norm) |
|
assert (x - x_).sum() < 1e-3, (x - x_).mean() |
|
|
|
self.ap.signal_norm = True |
|
self.ap.symmetric_norm = False |
|
self.ap.max_norm = 1.0 |
|
x_norm = self.ap.normalize(x) |
|
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") |
|
|
|
|
|
assert (x_old - x).sum() == 0 |
|
assert x_norm.max() <= self.ap.max_norm, x_norm.max() |
|
assert x_norm.min() >= 0, x_norm.min() |
|
x_ = self.ap.denormalize(x_norm) |
|
assert (x - x_).sum() < 1e-3 |
|
|
|
self.ap.signal_norm = True |
|
self.ap.symmetric_norm = True |
|
self.ap.max_norm = 1.0 |
|
x_norm = self.ap.normalize(x) |
|
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}") |
|
|
|
|
|
assert (x_old - x).sum() == 0 |
|
assert x_norm.max() <= self.ap.max_norm, x_norm.max() |
|
assert x_norm.min() >= -self.ap.max_norm, x_norm.min() |
|
assert x_norm.min() < 0, x_norm.min() |
|
x_ = self.ap.denormalize(x_norm) |
|
assert (x - x_).sum() < 1e-3 |
|
|
|
def test_scaler(self): |
|
scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy') |
|
conf.audio['stats_path'] = scaler_stats_path |
|
conf.audio['preemphasis'] = 0.0 |
|
conf.audio['do_trim_silence'] = True |
|
conf.audio['signal_norm'] = True |
|
|
|
ap = AudioProcessor(**conf.audio) |
|
mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path) |
|
ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) |
|
|
|
self.ap.signal_norm = False |
|
self.ap.preemphasis = 0.0 |
|
|
|
|
|
wav = self.ap.load_wav(WAV_FILE) |
|
mel_reference = self.ap.melspectrogram(wav) |
|
mel_norm = ap.melspectrogram(wav) |
|
mel_denorm = ap.denormalize(mel_norm) |
|
assert abs(mel_reference - mel_denorm).max() < 1e-4 |
|
|