File size: 7,469 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import unittest
from tests import get_tests_input_path, get_tests_output_path, get_tests_path
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
TESTS_PATH = get_tests_path()
OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests")
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
os.makedirs(OUT_PATH, exist_ok=True)
conf = load_config(os.path.join(get_tests_input_path(), 'test_config.json'))
# pylint: disable=protected-access
class TestAudio(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestAudio, self).__init__(*args, **kwargs)
self.ap = AudioProcessor(**conf.audio)
def test_audio_synthesis(self):
""" 1. load wav
2. set normalization parameters
3. extract mel-spec
4. invert to wav and save the output
"""
print(" > Sanity check for the process wav -> mel -> wav")
def _test(max_norm, signal_norm, symmetric_norm, clip_norm):
self.ap.max_norm = max_norm
self.ap.signal_norm = signal_norm
self.ap.symmetric_norm = symmetric_norm
self.ap.clip_norm = clip_norm
wav = self.ap.load_wav(WAV_FILE)
mel = self.ap.melspectrogram(wav)
wav_ = self.ap.inv_melspectrogram(mel)
file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\
.format(max_norm, signal_norm, symmetric_norm, clip_norm)
print(" | > Creating wav file at : ", file_name)
self.ap.save_wav(wav_, OUT_PATH + file_name)
# maxnorm = 1.0
_test(1., False, False, False)
_test(1., True, False, False)
_test(1., True, True, False)
_test(1., True, False, True)
_test(1., True, True, True)
# maxnorm = 4.0
_test(4., False, False, False)
_test(4., True, False, False)
_test(4., True, True, False)
_test(4., True, False, True)
_test(4., True, True, True)
def test_normalize(self):
"""Check normalization and denormalization for range values and consistency """
print(" > Testing normalization and denormalization.")
wav = self.ap.load_wav(WAV_FILE)
wav = self.ap.sound_norm(wav) # normalize audio to get abetter normalization range below.
self.ap.signal_norm = False
x = self.ap.melspectrogram(wav)
x_old = x
self.ap.signal_norm = True
self.ap.symmetric_norm = False
self.ap.clip_norm = False
self.ap.max_norm = 4.0
x_norm = self.ap.normalize(x)
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}")
assert (x_old - x).sum() == 0
# check value range
assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
assert x_norm.min() >= 0 - 1, x_norm.min()
# check denorm.
x_ = self.ap.denormalize(x_norm)
assert (x - x_).sum() < 1e-3, (x - x_).mean()
self.ap.signal_norm = True
self.ap.symmetric_norm = False
self.ap.clip_norm = True
self.ap.max_norm = 4.0
x_norm = self.ap.normalize(x)
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}")
assert (x_old - x).sum() == 0
# check value range
assert x_norm.max() <= self.ap.max_norm, x_norm.max()
assert x_norm.min() >= 0, x_norm.min()
# check denorm.
x_ = self.ap.denormalize(x_norm)
assert (x - x_).sum() < 1e-3, (x - x_).mean()
self.ap.signal_norm = True
self.ap.symmetric_norm = True
self.ap.clip_norm = False
self.ap.max_norm = 4.0
x_norm = self.ap.normalize(x)
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}")
assert (x_old - x).sum() == 0
# check value range
assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min() #pylint: disable=invalid-unary-operand-type
assert x_norm.min() <= 0, x_norm.min()
# check denorm.
x_ = self.ap.denormalize(x_norm)
assert (x - x_).sum() < 1e-3, (x - x_).mean()
self.ap.signal_norm = True
self.ap.symmetric_norm = True
self.ap.clip_norm = True
self.ap.max_norm = 4.0
x_norm = self.ap.normalize(x)
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}")
assert (x_old - x).sum() == 0
# check value range
assert x_norm.max() <= self.ap.max_norm, x_norm.max()
assert x_norm.min() >= -self.ap.max_norm, x_norm.min() #pylint: disable=invalid-unary-operand-type
assert x_norm.min() <= 0, x_norm.min()
# check denorm.
x_ = self.ap.denormalize(x_norm)
assert (x - x_).sum() < 1e-3, (x - x_).mean()
self.ap.signal_norm = True
self.ap.symmetric_norm = False
self.ap.max_norm = 1.0
x_norm = self.ap.normalize(x)
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}")
assert (x_old - x).sum() == 0
assert x_norm.max() <= self.ap.max_norm, x_norm.max()
assert x_norm.min() >= 0, x_norm.min()
x_ = self.ap.denormalize(x_norm)
assert (x - x_).sum() < 1e-3
self.ap.signal_norm = True
self.ap.symmetric_norm = True
self.ap.max_norm = 1.0
x_norm = self.ap.normalize(x)
print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} -- {x_norm.min()}")
assert (x_old - x).sum() == 0
assert x_norm.max() <= self.ap.max_norm, x_norm.max()
assert x_norm.min() >= -self.ap.max_norm, x_norm.min() #pylint: disable=invalid-unary-operand-type
assert x_norm.min() < 0, x_norm.min()
x_ = self.ap.denormalize(x_norm)
assert (x - x_).sum() < 1e-3
def test_scaler(self):
scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy')
conf.audio['stats_path'] = scaler_stats_path
conf.audio['preemphasis'] = 0.0
conf.audio['do_trim_silence'] = True
conf.audio['signal_norm'] = True
ap = AudioProcessor(**conf.audio)
mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path)
ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
self.ap.signal_norm = False
self.ap.preemphasis = 0.0
# test scaler forward and backward transforms
wav = self.ap.load_wav(WAV_FILE)
mel_reference = self.ap.melspectrogram(wav)
mel_norm = ap.melspectrogram(wav)
mel_denorm = ap.denormalize(mel_norm)
assert abs(mel_reference - mel_denorm).max() < 1e-4
|