voice-xtts2 / TTS /vocoder /utils /generic_utils.py
antoniomae1234's picture
changes in flenema
2493d72 verified
import re
import torch
import importlib
import numpy as np
from matplotlib import pyplot as plt
from TTS.tts.utils.visual import plot_spectrogram
def interpolate_vocoder_input(scale_factor, spec):
"""Interpolate spectrogram by the scale factor.
It is mainly used to match the sampling rates of
the tts and vocoder models.
Args:
scale_factor (float): scale factor to interpolate the spectrogram
spec (np.array): spectrogram to be interpolated
Returns:
torch.tensor: interpolated spectrogram.
"""
print(" > before interpolation :", spec.shape)
spec = torch.tensor(spec).unsqueeze(0).unsqueeze(0) # pylint: disable=not-callable
spec = torch.nn.functional.interpolate(spec,
scale_factor=scale_factor,
recompute_scale_factor=True,
mode='bilinear',
align_corners=False).squeeze(0)
print(" > after interpolation :", spec.shape)
return spec
def plot_results(y_hat, y, ap, global_step, name_prefix):
""" Plot vocoder model results """
# select an instance from batch
y_hat = y_hat[0].squeeze(0).detach().cpu().numpy()
y = y[0].squeeze(0).detach().cpu().numpy()
spec_fake = ap.melspectrogram(y_hat).T
spec_real = ap.melspectrogram(y).T
spec_diff = np.abs(spec_fake - spec_real)
# plot figure and save it
fig_wave = plt.figure()
plt.subplot(2, 1, 1)
plt.plot(y)
plt.title("groundtruth speech")
plt.subplot(2, 1, 2)
plt.plot(y_hat)
plt.title(f"generated speech @ {global_step} steps")
plt.tight_layout()
plt.close()
figures = {
name_prefix + "spectrogram/fake": plot_spectrogram(spec_fake),
name_prefix + "spectrogram/real": plot_spectrogram(spec_real),
name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff),
name_prefix + "speech_comparison": fig_wave,
}
return figures
def to_camel(text):
text = text.capitalize()
return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)
def setup_wavernn(c):
print(" > Model: WaveRNN")
MyModel = importlib.import_module("TTS.vocoder.models.wavernn")
MyModel = getattr(MyModel, "WaveRNN")
model = MyModel(
rnn_dims=c.wavernn_model_params['rnn_dims'],
fc_dims=c.wavernn_model_params['fc_dims'],
mode=c.mode,
mulaw=c.mulaw,
pad=c.padding,
use_aux_net=c.wavernn_model_params['use_aux_net'],
use_upsample_net=c.wavernn_model_params['use_upsample_net'],
upsample_factors=c.wavernn_model_params['upsample_factors'],
feat_dims=c.audio['num_mels'],
compute_dims=c.wavernn_model_params['compute_dims'],
res_out_dims=c.wavernn_model_params['res_out_dims'],
num_res_blocks=c.wavernn_model_params['num_res_blocks'],
hop_length=c.audio["hop_length"],
sample_rate=c.audio["sample_rate"],
)
return model
def setup_generator(c):
print(" > Generator Model: {}".format(c.generator_model))
MyModel = importlib.import_module('TTS.vocoder.models.' +
c.generator_model.lower())
MyModel = getattr(MyModel, to_camel(c.generator_model))
if c.generator_model.lower() in 'melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model in 'melgan_fb_generator':
pass
if c.generator_model.lower() in 'multiband_melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model.lower() in 'fullband_melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model.lower() in 'parallel_wavegan_generator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_res_blocks=c.generator_model_params['num_res_blocks'],
stacks=c.generator_model_params['stacks'],
res_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=c.audio['num_mels'],
dropout=0.0,
bias=True,
use_weight_norm=True,
upsample_factors=c.generator_model_params['upsample_factors'])
if c.generator_model.lower() in 'wavegrad':
model = MyModel(
in_channels=c['audio']['num_mels'],
out_channels=1,
use_weight_norm=c['model_params']['use_weight_norm'],
x_conv_channels=c['model_params']['x_conv_channels'],
y_conv_channels=c['model_params']['y_conv_channels'],
dblock_out_channels=c['model_params']['dblock_out_channels'],
ublock_out_channels=c['model_params']['ublock_out_channels'],
upsample_factors=c['model_params']['upsample_factors'],
upsample_dilations=c['model_params']['upsample_dilations'])
return model
def setup_discriminator(c):
print(" > Discriminator Model: {}".format(c.discriminator_model))
if 'parallel_wavegan' in c.discriminator_model:
MyModel = importlib.import_module(
'TTS.vocoder.models.parallel_wavegan_discriminator')
else:
MyModel = importlib.import_module('TTS.vocoder.models.' +
c.discriminator_model.lower())
MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower()))
if c.discriminator_model in 'random_window_discriminator':
model = MyModel(
cond_channels=c.audio['num_mels'],
hop_length=c.audio['hop_length'],
uncond_disc_donwsample_factors=c.
discriminator_model_params['uncond_disc_donwsample_factors'],
cond_disc_downsample_factors=c.
discriminator_model_params['cond_disc_downsample_factors'],
cond_disc_out_channels=c.
discriminator_model_params['cond_disc_out_channels'],
window_sizes=c.discriminator_model_params['window_sizes'])
if c.discriminator_model in 'melgan_multiscale_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_sizes=(5, 3),
base_channels=c.discriminator_model_params['base_channels'],
max_channels=c.discriminator_model_params['max_channels'],
downsample_factors=c.
discriminator_model_params['downsample_factors'])
if c.discriminator_model == 'residual_parallel_wavegan_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_layers=c.discriminator_model_params['num_layers'],
stacks=c.discriminator_model_params['stacks'],
res_channels=64,
gate_channels=128,
skip_channels=64,
dropout=0.0,
bias=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
)
if c.discriminator_model == 'parallel_wavegan_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_layers=c.discriminator_model_params['num_layers'],
conv_channels=64,
dilation_factor=1,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
bias=True
)
return model
# def check_config(c):
# c = None
# pass