File size: 8,372 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import re
import torch
import importlib
import numpy as np
from matplotlib import pyplot as plt
from TTS.tts.utils.visual import plot_spectrogram
def interpolate_vocoder_input(scale_factor, spec):
"""Interpolate spectrogram by the scale factor.
It is mainly used to match the sampling rates of
the tts and vocoder models.
Args:
scale_factor (float): scale factor to interpolate the spectrogram
spec (np.array): spectrogram to be interpolated
Returns:
torch.tensor: interpolated spectrogram.
"""
print(" > before interpolation :", spec.shape)
spec = torch.tensor(spec).unsqueeze(0).unsqueeze(0) # pylint: disable=not-callable
spec = torch.nn.functional.interpolate(spec,
scale_factor=scale_factor,
recompute_scale_factor=True,
mode='bilinear',
align_corners=False).squeeze(0)
print(" > after interpolation :", spec.shape)
return spec
def plot_results(y_hat, y, ap, global_step, name_prefix):
""" Plot vocoder model results """
# select an instance from batch
y_hat = y_hat[0].squeeze(0).detach().cpu().numpy()
y = y[0].squeeze(0).detach().cpu().numpy()
spec_fake = ap.melspectrogram(y_hat).T
spec_real = ap.melspectrogram(y).T
spec_diff = np.abs(spec_fake - spec_real)
# plot figure and save it
fig_wave = plt.figure()
plt.subplot(2, 1, 1)
plt.plot(y)
plt.title("groundtruth speech")
plt.subplot(2, 1, 2)
plt.plot(y_hat)
plt.title(f"generated speech @ {global_step} steps")
plt.tight_layout()
plt.close()
figures = {
name_prefix + "spectrogram/fake": plot_spectrogram(spec_fake),
name_prefix + "spectrogram/real": plot_spectrogram(spec_real),
name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff),
name_prefix + "speech_comparison": fig_wave,
}
return figures
def to_camel(text):
text = text.capitalize()
return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)
def setup_wavernn(c):
print(" > Model: WaveRNN")
MyModel = importlib.import_module("TTS.vocoder.models.wavernn")
MyModel = getattr(MyModel, "WaveRNN")
model = MyModel(
rnn_dims=c.wavernn_model_params['rnn_dims'],
fc_dims=c.wavernn_model_params['fc_dims'],
mode=c.mode,
mulaw=c.mulaw,
pad=c.padding,
use_aux_net=c.wavernn_model_params['use_aux_net'],
use_upsample_net=c.wavernn_model_params['use_upsample_net'],
upsample_factors=c.wavernn_model_params['upsample_factors'],
feat_dims=c.audio['num_mels'],
compute_dims=c.wavernn_model_params['compute_dims'],
res_out_dims=c.wavernn_model_params['res_out_dims'],
num_res_blocks=c.wavernn_model_params['num_res_blocks'],
hop_length=c.audio["hop_length"],
sample_rate=c.audio["sample_rate"],
)
return model
def setup_generator(c):
print(" > Generator Model: {}".format(c.generator_model))
MyModel = importlib.import_module('TTS.vocoder.models.' +
c.generator_model.lower())
MyModel = getattr(MyModel, to_camel(c.generator_model))
if c.generator_model.lower() in 'melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model in 'melgan_fb_generator':
pass
if c.generator_model.lower() in 'multiband_melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model.lower() in 'fullband_melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model.lower() in 'parallel_wavegan_generator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_res_blocks=c.generator_model_params['num_res_blocks'],
stacks=c.generator_model_params['stacks'],
res_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=c.audio['num_mels'],
dropout=0.0,
bias=True,
use_weight_norm=True,
upsample_factors=c.generator_model_params['upsample_factors'])
if c.generator_model.lower() in 'wavegrad':
model = MyModel(
in_channels=c['audio']['num_mels'],
out_channels=1,
use_weight_norm=c['model_params']['use_weight_norm'],
x_conv_channels=c['model_params']['x_conv_channels'],
y_conv_channels=c['model_params']['y_conv_channels'],
dblock_out_channels=c['model_params']['dblock_out_channels'],
ublock_out_channels=c['model_params']['ublock_out_channels'],
upsample_factors=c['model_params']['upsample_factors'],
upsample_dilations=c['model_params']['upsample_dilations'])
return model
def setup_discriminator(c):
print(" > Discriminator Model: {}".format(c.discriminator_model))
if 'parallel_wavegan' in c.discriminator_model:
MyModel = importlib.import_module(
'TTS.vocoder.models.parallel_wavegan_discriminator')
else:
MyModel = importlib.import_module('TTS.vocoder.models.' +
c.discriminator_model.lower())
MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower()))
if c.discriminator_model in 'random_window_discriminator':
model = MyModel(
cond_channels=c.audio['num_mels'],
hop_length=c.audio['hop_length'],
uncond_disc_donwsample_factors=c.
discriminator_model_params['uncond_disc_donwsample_factors'],
cond_disc_downsample_factors=c.
discriminator_model_params['cond_disc_downsample_factors'],
cond_disc_out_channels=c.
discriminator_model_params['cond_disc_out_channels'],
window_sizes=c.discriminator_model_params['window_sizes'])
if c.discriminator_model in 'melgan_multiscale_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_sizes=(5, 3),
base_channels=c.discriminator_model_params['base_channels'],
max_channels=c.discriminator_model_params['max_channels'],
downsample_factors=c.
discriminator_model_params['downsample_factors'])
if c.discriminator_model == 'residual_parallel_wavegan_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_layers=c.discriminator_model_params['num_layers'],
stacks=c.discriminator_model_params['stacks'],
res_channels=64,
gate_channels=128,
skip_channels=64,
dropout=0.0,
bias=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
)
if c.discriminator_model == 'parallel_wavegan_discriminator':
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_layers=c.discriminator_model_params['num_layers'],
conv_channels=64,
dilation_factor=1,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
bias=True
)
return model
# def check_config(c):
# c = None
# pass
|