File size: 8,372 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import re
import torch
import importlib
import numpy as np
from matplotlib import pyplot as plt

from TTS.tts.utils.visual import plot_spectrogram


def interpolate_vocoder_input(scale_factor, spec):
    """Interpolate spectrogram by the scale factor.
    It is mainly used to match the sampling rates of
    the tts and vocoder models.

    Args:
        scale_factor (float): scale factor to interpolate the spectrogram
        spec (np.array): spectrogram to be interpolated

    Returns:
        torch.tensor: interpolated spectrogram.
    """
    print(" > before interpolation :", spec.shape)
    spec = torch.tensor(spec).unsqueeze(0).unsqueeze(0)  # pylint: disable=not-callable
    spec = torch.nn.functional.interpolate(spec,
                                           scale_factor=scale_factor,
                                           recompute_scale_factor=True,
                                           mode='bilinear',
                                           align_corners=False).squeeze(0)
    print(" > after interpolation :", spec.shape)
    return spec


def plot_results(y_hat, y, ap, global_step, name_prefix):
    """ Plot vocoder model results """

    # select an instance from batch
    y_hat = y_hat[0].squeeze(0).detach().cpu().numpy()
    y = y[0].squeeze(0).detach().cpu().numpy()

    spec_fake = ap.melspectrogram(y_hat).T
    spec_real = ap.melspectrogram(y).T
    spec_diff = np.abs(spec_fake - spec_real)

    # plot figure and save it
    fig_wave = plt.figure()
    plt.subplot(2, 1, 1)
    plt.plot(y)
    plt.title("groundtruth speech")
    plt.subplot(2, 1, 2)
    plt.plot(y_hat)
    plt.title(f"generated speech @ {global_step} steps")
    plt.tight_layout()
    plt.close()

    figures = {
        name_prefix + "spectrogram/fake": plot_spectrogram(spec_fake),
        name_prefix + "spectrogram/real": plot_spectrogram(spec_real),
        name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff),
        name_prefix + "speech_comparison": fig_wave,
    }
    return figures


def to_camel(text):
    text = text.capitalize()
    return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)


def setup_wavernn(c):
    print(" > Model: WaveRNN")
    MyModel = importlib.import_module("TTS.vocoder.models.wavernn")
    MyModel = getattr(MyModel, "WaveRNN")
    model = MyModel(
        rnn_dims=c.wavernn_model_params['rnn_dims'],
        fc_dims=c.wavernn_model_params['fc_dims'],
        mode=c.mode,
        mulaw=c.mulaw,
        pad=c.padding,
        use_aux_net=c.wavernn_model_params['use_aux_net'],
        use_upsample_net=c.wavernn_model_params['use_upsample_net'],
        upsample_factors=c.wavernn_model_params['upsample_factors'],
        feat_dims=c.audio['num_mels'],
        compute_dims=c.wavernn_model_params['compute_dims'],
        res_out_dims=c.wavernn_model_params['res_out_dims'],
        num_res_blocks=c.wavernn_model_params['num_res_blocks'],
        hop_length=c.audio["hop_length"],
        sample_rate=c.audio["sample_rate"],
    )
    return model


def setup_generator(c):
    print(" > Generator Model: {}".format(c.generator_model))
    MyModel = importlib.import_module('TTS.vocoder.models.' +
                                      c.generator_model.lower())
    MyModel = getattr(MyModel, to_camel(c.generator_model))
    if c.generator_model.lower() in 'melgan_generator':
        model = MyModel(
            in_channels=c.audio['num_mels'],
            out_channels=1,
            proj_kernel=7,
            base_channels=512,
            upsample_factors=c.generator_model_params['upsample_factors'],
            res_kernel=3,
            num_res_blocks=c.generator_model_params['num_res_blocks'])
    if c.generator_model in 'melgan_fb_generator':
        pass
    if c.generator_model.lower() in 'multiband_melgan_generator':
        model = MyModel(
            in_channels=c.audio['num_mels'],
            out_channels=4,
            proj_kernel=7,
            base_channels=384,
            upsample_factors=c.generator_model_params['upsample_factors'],
            res_kernel=3,
            num_res_blocks=c.generator_model_params['num_res_blocks'])
    if c.generator_model.lower() in 'fullband_melgan_generator':
        model = MyModel(
            in_channels=c.audio['num_mels'],
            out_channels=1,
            proj_kernel=7,
            base_channels=512,
            upsample_factors=c.generator_model_params['upsample_factors'],
            res_kernel=3,
            num_res_blocks=c.generator_model_params['num_res_blocks'])
    if c.generator_model.lower() in 'parallel_wavegan_generator':
        model = MyModel(
            in_channels=1,
            out_channels=1,
            kernel_size=3,
            num_res_blocks=c.generator_model_params['num_res_blocks'],
            stacks=c.generator_model_params['stacks'],
            res_channels=64,
            gate_channels=128,
            skip_channels=64,
            aux_channels=c.audio['num_mels'],
            dropout=0.0,
            bias=True,
            use_weight_norm=True,
            upsample_factors=c.generator_model_params['upsample_factors'])
    if c.generator_model.lower() in 'wavegrad':
        model = MyModel(
            in_channels=c['audio']['num_mels'],
            out_channels=1,
            use_weight_norm=c['model_params']['use_weight_norm'],
            x_conv_channels=c['model_params']['x_conv_channels'],
            y_conv_channels=c['model_params']['y_conv_channels'],
            dblock_out_channels=c['model_params']['dblock_out_channels'],
            ublock_out_channels=c['model_params']['ublock_out_channels'],
            upsample_factors=c['model_params']['upsample_factors'],
            upsample_dilations=c['model_params']['upsample_dilations'])
    return model


def setup_discriminator(c):
    print(" > Discriminator Model: {}".format(c.discriminator_model))
    if 'parallel_wavegan' in c.discriminator_model:
        MyModel = importlib.import_module(
            'TTS.vocoder.models.parallel_wavegan_discriminator')
    else:
        MyModel = importlib.import_module('TTS.vocoder.models.' +
                                          c.discriminator_model.lower())
    MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower()))
    if c.discriminator_model in 'random_window_discriminator':
        model = MyModel(
            cond_channels=c.audio['num_mels'],
            hop_length=c.audio['hop_length'],
            uncond_disc_donwsample_factors=c.
            discriminator_model_params['uncond_disc_donwsample_factors'],
            cond_disc_downsample_factors=c.
            discriminator_model_params['cond_disc_downsample_factors'],
            cond_disc_out_channels=c.
            discriminator_model_params['cond_disc_out_channels'],
            window_sizes=c.discriminator_model_params['window_sizes'])
    if c.discriminator_model in 'melgan_multiscale_discriminator':
        model = MyModel(
            in_channels=1,
            out_channels=1,
            kernel_sizes=(5, 3),
            base_channels=c.discriminator_model_params['base_channels'],
            max_channels=c.discriminator_model_params['max_channels'],
            downsample_factors=c.
            discriminator_model_params['downsample_factors'])
    if c.discriminator_model == 'residual_parallel_wavegan_discriminator':
        model = MyModel(
            in_channels=1,
            out_channels=1,
            kernel_size=3,
            num_layers=c.discriminator_model_params['num_layers'],
            stacks=c.discriminator_model_params['stacks'],
            res_channels=64,
            gate_channels=128,
            skip_channels=64,
            dropout=0.0,
            bias=True,
            nonlinear_activation="LeakyReLU",
            nonlinear_activation_params={"negative_slope": 0.2},
        )
    if c.discriminator_model == 'parallel_wavegan_discriminator':
        model = MyModel(
            in_channels=1,
            out_channels=1,
            kernel_size=3,
            num_layers=c.discriminator_model_params['num_layers'],
            conv_channels=64,
            dilation_factor=1,
            nonlinear_activation="LeakyReLU",
            nonlinear_activation_params={"negative_slope": 0.2},
            bias=True
        )
    return model


# def check_config(c):
#     c = None
#     pass