|
import librosa |
|
import soundfile as sf |
|
import numpy as np |
|
import scipy.io.wavfile |
|
import scipy.signal |
|
|
|
|
|
from TTS.tts.utils.data import StandardScaler |
|
|
|
|
|
class AudioProcessor(object): |
|
def __init__(self, |
|
sample_rate=None, |
|
resample=False, |
|
num_mels=None, |
|
min_level_db=None, |
|
frame_shift_ms=None, |
|
frame_length_ms=None, |
|
hop_length=None, |
|
win_length=None, |
|
ref_level_db=None, |
|
fft_size=1024, |
|
power=None, |
|
preemphasis=0.0, |
|
signal_norm=None, |
|
symmetric_norm=None, |
|
max_norm=None, |
|
mel_fmin=None, |
|
mel_fmax=None, |
|
spec_gain=20, |
|
stft_pad_mode='reflect', |
|
clip_norm=True, |
|
griffin_lim_iters=None, |
|
do_trim_silence=False, |
|
trim_db=60, |
|
do_sound_norm=False, |
|
stats_path=None, |
|
verbose=True, |
|
**_): |
|
|
|
|
|
self.sample_rate = sample_rate |
|
self.resample = resample |
|
self.num_mels = num_mels |
|
self.min_level_db = min_level_db or 0 |
|
self.frame_shift_ms = frame_shift_ms |
|
self.frame_length_ms = frame_length_ms |
|
self.ref_level_db = ref_level_db |
|
self.fft_size = fft_size |
|
self.power = power |
|
self.preemphasis = preemphasis |
|
self.griffin_lim_iters = griffin_lim_iters |
|
self.signal_norm = signal_norm |
|
self.symmetric_norm = symmetric_norm |
|
self.mel_fmin = mel_fmin or 0 |
|
self.mel_fmax = mel_fmax |
|
self.spec_gain = float(spec_gain) |
|
self.stft_pad_mode = stft_pad_mode |
|
self.max_norm = 1.0 if max_norm is None else float(max_norm) |
|
self.clip_norm = clip_norm |
|
self.do_trim_silence = do_trim_silence |
|
self.trim_db = trim_db |
|
self.do_sound_norm = do_sound_norm |
|
self.stats_path = stats_path |
|
|
|
if hop_length is None: |
|
|
|
self.hop_length, self.win_length = self._stft_parameters() |
|
else: |
|
|
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
assert min_level_db != 0.0, " [!] min_level_db is 0" |
|
assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size" |
|
members = vars(self) |
|
if verbose: |
|
print(" > Setting up Audio Processor...") |
|
for key, value in members.items(): |
|
print(" | > {}:{}".format(key, value)) |
|
|
|
self.mel_basis = self._build_mel_basis() |
|
self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis()) |
|
|
|
if stats_path: |
|
mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path) |
|
self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) |
|
self.signal_norm = True |
|
self.max_norm = None |
|
self.clip_norm = None |
|
self.symmetric_norm = None |
|
|
|
|
|
def _build_mel_basis(self, ): |
|
if self.mel_fmax is not None: |
|
assert self.mel_fmax <= self.sample_rate // 2 |
|
return librosa.filters.mel( |
|
self.sample_rate, |
|
self.fft_size, |
|
n_mels=self.num_mels, |
|
fmin=self.mel_fmin, |
|
fmax=self.mel_fmax) |
|
|
|
def _stft_parameters(self, ): |
|
"""Compute necessary stft parameters with given time values""" |
|
factor = self.frame_length_ms / self.frame_shift_ms |
|
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" |
|
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate) |
|
win_length = int(hop_length * factor) |
|
return hop_length, win_length |
|
|
|
|
|
def normalize(self, S): |
|
"""Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]""" |
|
|
|
S = S.copy() |
|
if self.signal_norm: |
|
|
|
if hasattr(self, 'mel_scaler'): |
|
if S.shape[0] == self.num_mels: |
|
return self.mel_scaler.transform(S.T).T |
|
elif S.shape[0] == self.fft_size / 2: |
|
return self.linear_scaler.transform(S.T).T |
|
else: |
|
raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.') |
|
|
|
S -= self.ref_level_db |
|
S_norm = ((S - self.min_level_db) / (-self.min_level_db)) |
|
if self.symmetric_norm: |
|
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm |
|
if self.clip_norm: |
|
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm) |
|
return S_norm |
|
else: |
|
S_norm = self.max_norm * S_norm |
|
if self.clip_norm: |
|
S_norm = np.clip(S_norm, 0, self.max_norm) |
|
return S_norm |
|
else: |
|
return S |
|
|
|
def denormalize(self, S): |
|
"""denormalize values""" |
|
|
|
S_denorm = S.copy() |
|
if self.signal_norm: |
|
|
|
if hasattr(self, 'mel_scaler'): |
|
if S_denorm.shape[0] == self.num_mels: |
|
return self.mel_scaler.inverse_transform(S_denorm.T).T |
|
elif S_denorm.shape[0] == self.fft_size / 2: |
|
return self.linear_scaler.inverse_transform(S_denorm.T).T |
|
else: |
|
raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.') |
|
if self.symmetric_norm: |
|
if self.clip_norm: |
|
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm) |
|
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db |
|
return S_denorm + self.ref_level_db |
|
else: |
|
if self.clip_norm: |
|
S_denorm = np.clip(S_denorm, 0, self.max_norm) |
|
S_denorm = (S_denorm * -self.min_level_db / |
|
self.max_norm) + self.min_level_db |
|
return S_denorm + self.ref_level_db |
|
else: |
|
return S_denorm |
|
|
|
|
|
def load_stats(self, stats_path): |
|
stats = np.load(stats_path, allow_pickle=True).item() |
|
mel_mean = stats['mel_mean'] |
|
mel_std = stats['mel_std'] |
|
linear_mean = stats['linear_mean'] |
|
linear_std = stats['linear_std'] |
|
stats_config = stats['audio_config'] |
|
|
|
skip_parameters = ['griffin_lim_iters', 'stats_path', 'do_trim_silence', 'ref_level_db', 'power'] |
|
for key in stats_config.keys(): |
|
if key in skip_parameters: |
|
continue |
|
if key not in ['sample_rate', 'trim_db']: |
|
assert stats_config[key] == self.__dict__[key],\ |
|
f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}" |
|
return mel_mean, mel_std, linear_mean, linear_std, stats_config |
|
|
|
|
|
def setup_scaler(self, mel_mean, mel_std, linear_mean, linear_std): |
|
self.mel_scaler = StandardScaler() |
|
self.mel_scaler.set_stats(mel_mean, mel_std) |
|
self.linear_scaler = StandardScaler() |
|
self.linear_scaler.set_stats(linear_mean, linear_std) |
|
|
|
|
|
|
|
def _amp_to_db(self, x): |
|
return self.spec_gain * np.log10(np.maximum(1e-5, x)) |
|
|
|
|
|
def _db_to_amp(self, x): |
|
return np.power(10.0, x / self.spec_gain) |
|
|
|
|
|
def apply_preemphasis(self, x): |
|
if self.preemphasis == 0: |
|
raise RuntimeError(" [!] Preemphasis is set 0.0.") |
|
return scipy.signal.lfilter([1, -self.preemphasis], [1], x) |
|
|
|
def apply_inv_preemphasis(self, x): |
|
if self.preemphasis == 0: |
|
raise RuntimeError(" [!] Preemphasis is set 0.0.") |
|
return scipy.signal.lfilter([1], [1, -self.preemphasis], x) |
|
|
|
|
|
def _linear_to_mel(self, spectrogram): |
|
return np.dot(self.mel_basis, spectrogram) |
|
|
|
def _mel_to_linear(self, mel_spec): |
|
return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec)) |
|
|
|
def spectrogram(self, y): |
|
if self.preemphasis != 0: |
|
D = self._stft(self.apply_preemphasis(y)) |
|
else: |
|
D = self._stft(y) |
|
S = self._amp_to_db(np.abs(D)) |
|
return self.normalize(S) |
|
|
|
def melspectrogram(self, y): |
|
if self.preemphasis != 0: |
|
D = self._stft(self.apply_preemphasis(y)) |
|
else: |
|
D = self._stft(y) |
|
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) |
|
return self.normalize(S) |
|
|
|
def inv_spectrogram(self, spectrogram): |
|
"""Converts spectrogram to waveform using librosa""" |
|
S = self.denormalize(spectrogram) |
|
S = self._db_to_amp(S) |
|
|
|
if self.preemphasis != 0: |
|
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power)) |
|
return self._griffin_lim(S**self.power) |
|
|
|
def inv_melspectrogram(self, mel_spectrogram): |
|
'''Converts melspectrogram to waveform using librosa''' |
|
D = self.denormalize(mel_spectrogram) |
|
S = self._db_to_amp(D) |
|
S = self._mel_to_linear(S) |
|
if self.preemphasis != 0: |
|
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power)) |
|
return self._griffin_lim(S**self.power) |
|
|
|
def out_linear_to_mel(self, linear_spec): |
|
S = self.denormalize(linear_spec) |
|
S = self._db_to_amp(S) |
|
S = self._linear_to_mel(np.abs(S)) |
|
S = self._amp_to_db(S) |
|
mel = self.normalize(S) |
|
return mel |
|
|
|
|
|
def _stft(self, y): |
|
return librosa.stft( |
|
y=y, |
|
n_fft=self.fft_size, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
pad_mode=self.stft_pad_mode, |
|
) |
|
|
|
def _istft(self, y): |
|
return librosa.istft( |
|
y, hop_length=self.hop_length, win_length=self.win_length) |
|
|
|
def _griffin_lim(self, S): |
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) |
|
S_complex = np.abs(S).astype(np.complex) |
|
y = self._istft(S_complex * angles) |
|
for _ in range(self.griffin_lim_iters): |
|
angles = np.exp(1j * np.angle(self._stft(y))) |
|
y = self._istft(S_complex * angles) |
|
return y |
|
|
|
def compute_stft_paddings(self, x, pad_sides=1): |
|
'''compute right padding (final frame) or both sides padding (first and final frames) |
|
''' |
|
assert pad_sides in (1, 2) |
|
pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0] |
|
if pad_sides == 1: |
|
return 0, pad |
|
return pad // 2, pad // 2 + pad % 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8): |
|
window_length = int(self.sample_rate * min_silence_sec) |
|
hop_length = int(window_length / 4) |
|
threshold = self._db_to_amp(threshold_db) |
|
for x in range(hop_length, len(wav) - window_length, hop_length): |
|
if np.max(wav[x:x + window_length]) < threshold: |
|
return x + hop_length |
|
return len(wav) |
|
|
|
def trim_silence(self, wav): |
|
""" Trim silent parts with a threshold and 0.01 sec margin """ |
|
margin = int(self.sample_rate * 0.01) |
|
wav = wav[margin:-margin] |
|
return librosa.effects.trim( |
|
wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0] |
|
|
|
@staticmethod |
|
def sound_norm(x): |
|
return x / abs(x).max() * 0.9 |
|
|
|
|
|
def load_wav(self, filename, sr=None): |
|
if self.resample: |
|
x, sr = librosa.load(filename, sr=self.sample_rate) |
|
elif sr is None: |
|
x, sr = sf.read(filename) |
|
assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr) |
|
else: |
|
x, sr = librosa.load(filename, sr=sr) |
|
if self.do_trim_silence: |
|
try: |
|
x = self.trim_silence(x) |
|
except ValueError: |
|
print(f' [!] File cannot be trimmed for silence - {filename}') |
|
if self.do_sound_norm: |
|
x = self.sound_norm(x) |
|
return x |
|
|
|
def save_wav(self, wav, path): |
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) |
|
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16)) |
|
|
|
@staticmethod |
|
def mulaw_encode(wav, qc): |
|
mu = 2 ** qc - 1 |
|
|
|
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu) |
|
|
|
signal = (signal + 1) / 2 * mu + 0.5 |
|
return np.floor(signal,) |
|
|
|
@staticmethod |
|
def mulaw_decode(wav, qc): |
|
"""Recovers waveform from quantized values.""" |
|
mu = 2 ** qc - 1 |
|
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) |
|
return x |
|
|
|
|
|
@staticmethod |
|
def encode_16bits(x): |
|
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16) |
|
|
|
@staticmethod |
|
def quantize(x, bits): |
|
return (x + 1.) * (2**bits - 1) / 2 |
|
|
|
@staticmethod |
|
def dequantize(x, bits): |
|
return 2 * x / (2**bits - 1) - 1 |
|
|