File size: 14,654 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import librosa
import soundfile as sf
import numpy as np
import scipy.io.wavfile
import scipy.signal
# import pyworld as pw
from TTS.tts.utils.data import StandardScaler
#pylint: disable=too-many-public-methods
class AudioProcessor(object):
def __init__(self,
sample_rate=None,
resample=False,
num_mels=None,
min_level_db=None,
frame_shift_ms=None,
frame_length_ms=None,
hop_length=None,
win_length=None,
ref_level_db=None,
fft_size=1024,
power=None,
preemphasis=0.0,
signal_norm=None,
symmetric_norm=None,
max_norm=None,
mel_fmin=None,
mel_fmax=None,
spec_gain=20,
stft_pad_mode='reflect',
clip_norm=True,
griffin_lim_iters=None,
do_trim_silence=False,
trim_db=60,
do_sound_norm=False,
stats_path=None,
verbose=True,
**_):
# setup class attributed
self.sample_rate = sample_rate
self.resample = resample
self.num_mels = num_mels
self.min_level_db = min_level_db or 0
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.ref_level_db = ref_level_db
self.fft_size = fft_size
self.power = power
self.preemphasis = preemphasis
self.griffin_lim_iters = griffin_lim_iters
self.signal_norm = signal_norm
self.symmetric_norm = symmetric_norm
self.mel_fmin = mel_fmin or 0
self.mel_fmax = mel_fmax
self.spec_gain = float(spec_gain)
self.stft_pad_mode = stft_pad_mode
self.max_norm = 1.0 if max_norm is None else float(max_norm)
self.clip_norm = clip_norm
self.do_trim_silence = do_trim_silence
self.trim_db = trim_db
self.do_sound_norm = do_sound_norm
self.stats_path = stats_path
# setup stft parameters
if hop_length is None:
# compute stft parameters from given time values
self.hop_length, self.win_length = self._stft_parameters()
else:
# use stft parameters from config file
self.hop_length = hop_length
self.win_length = win_length
assert min_level_db != 0.0, " [!] min_level_db is 0"
assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size"
members = vars(self)
if verbose:
print(" > Setting up Audio Processor...")
for key, value in members.items():
print(" | > {}:{}".format(key, value))
# create spectrogram utils
self.mel_basis = self._build_mel_basis()
self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
# setup scaler
if stats_path:
mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
self.signal_norm = True
self.max_norm = None
self.clip_norm = None
self.symmetric_norm = None
### setting up the parameters ###
def _build_mel_basis(self, ):
if self.mel_fmax is not None:
assert self.mel_fmax <= self.sample_rate // 2
return librosa.filters.mel(
self.sample_rate,
self.fft_size,
n_mels=self.num_mels,
fmin=self.mel_fmin,
fmax=self.mel_fmax)
def _stft_parameters(self, ):
"""Compute necessary stft parameters with given time values"""
factor = self.frame_length_ms / self.frame_shift_ms
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
win_length = int(hop_length * factor)
return hop_length, win_length
### normalization ###
def normalize(self, S):
"""Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]"""
#pylint: disable=no-else-return
S = S.copy()
if self.signal_norm:
# mean-var scaling
if hasattr(self, 'mel_scaler'):
if S.shape[0] == self.num_mels:
return self.mel_scaler.transform(S.T).T
elif S.shape[0] == self.fft_size / 2:
return self.linear_scaler.transform(S.T).T
else:
raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
# range normalization
S -= self.ref_level_db # discard certain range of DB assuming it is air noise
S_norm = ((S - self.min_level_db) / (-self.min_level_db))
if self.symmetric_norm:
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
if self.clip_norm:
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm) # pylint: disable=invalid-unary-operand-type
return S_norm
else:
S_norm = self.max_norm * S_norm
if self.clip_norm:
S_norm = np.clip(S_norm, 0, self.max_norm)
return S_norm
else:
return S
def denormalize(self, S):
"""denormalize values"""
#pylint: disable=no-else-return
S_denorm = S.copy()
if self.signal_norm:
# mean-var scaling
if hasattr(self, 'mel_scaler'):
if S_denorm.shape[0] == self.num_mels:
return self.mel_scaler.inverse_transform(S_denorm.T).T
elif S_denorm.shape[0] == self.fft_size / 2:
return self.linear_scaler.inverse_transform(S_denorm.T).T
else:
raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
if self.symmetric_norm:
if self.clip_norm:
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm) #pylint: disable=invalid-unary-operand-type
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
return S_denorm + self.ref_level_db
else:
if self.clip_norm:
S_denorm = np.clip(S_denorm, 0, self.max_norm)
S_denorm = (S_denorm * -self.min_level_db /
self.max_norm) + self.min_level_db
return S_denorm + self.ref_level_db
else:
return S_denorm
### Mean-STD scaling ###
def load_stats(self, stats_path):
stats = np.load(stats_path, allow_pickle=True).item() #pylint: disable=unexpected-keyword-arg
mel_mean = stats['mel_mean']
mel_std = stats['mel_std']
linear_mean = stats['linear_mean']
linear_std = stats['linear_std']
stats_config = stats['audio_config']
# check all audio parameters used for computing stats
skip_parameters = ['griffin_lim_iters', 'stats_path', 'do_trim_silence', 'ref_level_db', 'power']
for key in stats_config.keys():
if key in skip_parameters:
continue
if key not in ['sample_rate', 'trim_db']:
assert stats_config[key] == self.__dict__[key],\
f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
return mel_mean, mel_std, linear_mean, linear_std, stats_config
# pylint: disable=attribute-defined-outside-init
def setup_scaler(self, mel_mean, mel_std, linear_mean, linear_std):
self.mel_scaler = StandardScaler()
self.mel_scaler.set_stats(mel_mean, mel_std)
self.linear_scaler = StandardScaler()
self.linear_scaler.set_stats(linear_mean, linear_std)
### DB and AMP conversion ###
# pylint: disable=no-self-use
def _amp_to_db(self, x):
return self.spec_gain * np.log10(np.maximum(1e-5, x))
# pylint: disable=no-self-use
def _db_to_amp(self, x):
return np.power(10.0, x / self.spec_gain)
### Preemphasis ###
def apply_preemphasis(self, x):
if self.preemphasis == 0:
raise RuntimeError(" [!] Preemphasis is set 0.0.")
return scipy.signal.lfilter([1, -self.preemphasis], [1], x)
def apply_inv_preemphasis(self, x):
if self.preemphasis == 0:
raise RuntimeError(" [!] Preemphasis is set 0.0.")
return scipy.signal.lfilter([1], [1, -self.preemphasis], x)
### SPECTROGRAMs ###
def _linear_to_mel(self, spectrogram):
return np.dot(self.mel_basis, spectrogram)
def _mel_to_linear(self, mel_spec):
return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))
def spectrogram(self, y):
if self.preemphasis != 0:
D = self._stft(self.apply_preemphasis(y))
else:
D = self._stft(y)
S = self._amp_to_db(np.abs(D))
return self.normalize(S)
def melspectrogram(self, y):
if self.preemphasis != 0:
D = self._stft(self.apply_preemphasis(y))
else:
D = self._stft(y)
S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
return self.normalize(S)
def inv_spectrogram(self, spectrogram):
"""Converts spectrogram to waveform using librosa"""
S = self.denormalize(spectrogram)
S = self._db_to_amp(S)
# Reconstruct phase
if self.preemphasis != 0:
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
return self._griffin_lim(S**self.power)
def inv_melspectrogram(self, mel_spectrogram):
'''Converts melspectrogram to waveform using librosa'''
D = self.denormalize(mel_spectrogram)
S = self._db_to_amp(D)
S = self._mel_to_linear(S) # Convert back to linear
if self.preemphasis != 0:
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
return self._griffin_lim(S**self.power)
def out_linear_to_mel(self, linear_spec):
S = self.denormalize(linear_spec)
S = self._db_to_amp(S)
S = self._linear_to_mel(np.abs(S))
S = self._amp_to_db(S)
mel = self.normalize(S)
return mel
### STFT and ISTFT ###
def _stft(self, y):
return librosa.stft(
y=y,
n_fft=self.fft_size,
hop_length=self.hop_length,
win_length=self.win_length,
pad_mode=self.stft_pad_mode,
)
def _istft(self, y):
return librosa.istft(
y, hop_length=self.hop_length, win_length=self.win_length)
def _griffin_lim(self, S):
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = self._istft(S_complex * angles)
for _ in range(self.griffin_lim_iters):
angles = np.exp(1j * np.angle(self._stft(y)))
y = self._istft(S_complex * angles)
return y
def compute_stft_paddings(self, x, pad_sides=1):
'''compute right padding (final frame) or both sides padding (first and final frames)
'''
assert pad_sides in (1, 2)
pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
if pad_sides == 1:
return 0, pad
return pad // 2, pad // 2 + pad % 2
### Compute F0 ###
# def compute_f0(self, x):
# f0, t = pw.dio(
# x.astype(np.double),
# fs=self.sample_rate,
# f0_ceil=self.mel_fmax,
# frame_period=1000 * self.hop_length / self.sample_rate,
# )
# f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
# return f0
### Audio Processing ###
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(self.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = self._db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)
def trim_silence(self, wav):
""" Trim silent parts with a threshold and 0.01 sec margin """
margin = int(self.sample_rate * 0.01)
wav = wav[margin:-margin]
return librosa.effects.trim(
wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]
@staticmethod
def sound_norm(x):
return x / abs(x).max() * 0.9
### save and load ###
def load_wav(self, filename, sr=None):
if self.resample:
x, sr = librosa.load(filename, sr=self.sample_rate)
elif sr is None:
x, sr = sf.read(filename)
assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr)
else:
x, sr = librosa.load(filename, sr=sr)
if self.do_trim_silence:
try:
x = self.trim_silence(x)
except ValueError:
print(f' [!] File cannot be trimmed for silence - {filename}')
if self.do_sound_norm:
x = self.sound_norm(x)
return x
def save_wav(self, wav, path):
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
@staticmethod
def mulaw_encode(wav, qc):
mu = 2 ** qc - 1
# wav_abs = np.minimum(np.abs(wav), 1.0)
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
# Quantize signal to the specified number of levels.
signal = (signal + 1) / 2 * mu + 0.5
return np.floor(signal,)
@staticmethod
def mulaw_decode(wav, qc):
"""Recovers waveform from quantized values."""
mu = 2 ** qc - 1
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
return x
@staticmethod
def encode_16bits(x):
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
@staticmethod
def quantize(x, bits):
return (x + 1.) * (2**bits - 1) / 2
@staticmethod
def dequantize(x, bits):
return 2 * x / (2**bits - 1) - 1
|