File size: 14,654 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import librosa
import soundfile as sf
import numpy as np
import scipy.io.wavfile
import scipy.signal
# import pyworld as pw

from TTS.tts.utils.data import StandardScaler

#pylint: disable=too-many-public-methods
class AudioProcessor(object):
    def __init__(self,
                 sample_rate=None,
                 resample=False,
                 num_mels=None,
                 min_level_db=None,
                 frame_shift_ms=None,
                 frame_length_ms=None,
                 hop_length=None,
                 win_length=None,
                 ref_level_db=None,
                 fft_size=1024,
                 power=None,
                 preemphasis=0.0,
                 signal_norm=None,
                 symmetric_norm=None,
                 max_norm=None,
                 mel_fmin=None,
                 mel_fmax=None,
                 spec_gain=20,
                 stft_pad_mode='reflect',
                 clip_norm=True,
                 griffin_lim_iters=None,
                 do_trim_silence=False,
                 trim_db=60,
                 do_sound_norm=False,
                 stats_path=None,
                 verbose=True,
                 **_):

        # setup class attributed
        self.sample_rate = sample_rate
        self.resample = resample
        self.num_mels = num_mels
        self.min_level_db = min_level_db or 0
        self.frame_shift_ms = frame_shift_ms
        self.frame_length_ms = frame_length_ms
        self.ref_level_db = ref_level_db
        self.fft_size = fft_size
        self.power = power
        self.preemphasis = preemphasis
        self.griffin_lim_iters = griffin_lim_iters
        self.signal_norm = signal_norm
        self.symmetric_norm = symmetric_norm
        self.mel_fmin = mel_fmin or 0
        self.mel_fmax = mel_fmax
        self.spec_gain = float(spec_gain)
        self.stft_pad_mode = stft_pad_mode
        self.max_norm = 1.0 if max_norm is None else float(max_norm)
        self.clip_norm = clip_norm
        self.do_trim_silence = do_trim_silence
        self.trim_db = trim_db
        self.do_sound_norm = do_sound_norm
        self.stats_path = stats_path
        # setup stft parameters
        if hop_length is None:
            # compute stft parameters from given time values
            self.hop_length, self.win_length = self._stft_parameters()
        else:
            # use stft parameters from config file
            self.hop_length = hop_length
            self.win_length = win_length
        assert min_level_db != 0.0, " [!] min_level_db is 0"
        assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size"
        members = vars(self)
        if verbose:
            print(" > Setting up Audio Processor...")
            for key, value in members.items():
                print(" | > {}:{}".format(key, value))
        # create spectrogram utils
        self.mel_basis = self._build_mel_basis()
        self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
        # setup scaler
        if stats_path:
            mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
            self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
            self.signal_norm = True
            self.max_norm = None
            self.clip_norm = None
            self.symmetric_norm = None

    ### setting up the parameters ###
    def _build_mel_basis(self, ):
        if self.mel_fmax is not None:
            assert self.mel_fmax <= self.sample_rate // 2
        return librosa.filters.mel(
            self.sample_rate,
            self.fft_size,
            n_mels=self.num_mels,
            fmin=self.mel_fmin,
            fmax=self.mel_fmax)

    def _stft_parameters(self, ):
        """Compute necessary stft parameters with given time values"""
        factor = self.frame_length_ms / self.frame_shift_ms
        assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
        hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
        win_length = int(hop_length * factor)
        return hop_length, win_length

    ### normalization ###
    def normalize(self, S):
        """Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]"""
        #pylint: disable=no-else-return
        S = S.copy()
        if self.signal_norm:
            # mean-var scaling
            if hasattr(self, 'mel_scaler'):
                if S.shape[0] == self.num_mels:
                    return self.mel_scaler.transform(S.T).T
                elif S.shape[0] == self.fft_size / 2:
                    return self.linear_scaler.transform(S.T).T
                else:
                    raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
            # range normalization
            S -= self.ref_level_db  # discard certain range of DB assuming it is air noise
            S_norm = ((S - self.min_level_db) / (-self.min_level_db))
            if self.symmetric_norm:
                S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
                if self.clip_norm:
                    S_norm = np.clip(S_norm, -self.max_norm, self.max_norm)  # pylint: disable=invalid-unary-operand-type
                return S_norm
            else:
                S_norm = self.max_norm * S_norm
                if self.clip_norm:
                    S_norm = np.clip(S_norm, 0, self.max_norm)
                return S_norm
        else:
            return S

    def denormalize(self, S):
        """denormalize values"""
        #pylint: disable=no-else-return
        S_denorm = S.copy()
        if self.signal_norm:
            # mean-var scaling
            if hasattr(self, 'mel_scaler'):
                if S_denorm.shape[0] == self.num_mels:
                    return self.mel_scaler.inverse_transform(S_denorm.T).T
                elif S_denorm.shape[0] == self.fft_size / 2:
                    return self.linear_scaler.inverse_transform(S_denorm.T).T
                else:
                    raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
            if self.symmetric_norm:
                if self.clip_norm:
                    S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)  #pylint: disable=invalid-unary-operand-type
                S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
                return S_denorm + self.ref_level_db
            else:
                if self.clip_norm:
                    S_denorm = np.clip(S_denorm, 0, self.max_norm)
                S_denorm = (S_denorm * -self.min_level_db /
                            self.max_norm) + self.min_level_db
                return S_denorm + self.ref_level_db
        else:
            return S_denorm

    ### Mean-STD scaling ###
    def load_stats(self, stats_path):
        stats = np.load(stats_path, allow_pickle=True).item()  #pylint: disable=unexpected-keyword-arg
        mel_mean = stats['mel_mean']
        mel_std = stats['mel_std']
        linear_mean = stats['linear_mean']
        linear_std = stats['linear_std']
        stats_config = stats['audio_config']
        # check all audio parameters used for computing stats
        skip_parameters = ['griffin_lim_iters', 'stats_path', 'do_trim_silence', 'ref_level_db', 'power']
        for key in stats_config.keys():
            if key in skip_parameters:
                continue
            if key not in ['sample_rate', 'trim_db']:
                assert stats_config[key] == self.__dict__[key],\
                    f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
        return mel_mean, mel_std, linear_mean, linear_std, stats_config

    # pylint: disable=attribute-defined-outside-init
    def setup_scaler(self, mel_mean, mel_std, linear_mean, linear_std):
        self.mel_scaler = StandardScaler()
        self.mel_scaler.set_stats(mel_mean, mel_std)
        self.linear_scaler = StandardScaler()
        self.linear_scaler.set_stats(linear_mean, linear_std)

    ### DB and AMP conversion ###
    # pylint: disable=no-self-use
    def _amp_to_db(self, x):
        return self.spec_gain * np.log10(np.maximum(1e-5, x))

    # pylint: disable=no-self-use
    def _db_to_amp(self, x):
        return np.power(10.0, x / self.spec_gain)

    ### Preemphasis ###
    def apply_preemphasis(self, x):
        if self.preemphasis == 0:
            raise RuntimeError(" [!] Preemphasis is set 0.0.")
        return scipy.signal.lfilter([1, -self.preemphasis], [1], x)

    def apply_inv_preemphasis(self, x):
        if self.preemphasis == 0:
            raise RuntimeError(" [!] Preemphasis is set 0.0.")
        return scipy.signal.lfilter([1], [1, -self.preemphasis], x)

    ### SPECTROGRAMs ###
    def _linear_to_mel(self, spectrogram):
        return np.dot(self.mel_basis, spectrogram)

    def _mel_to_linear(self, mel_spec):
        return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))

    def spectrogram(self, y):
        if self.preemphasis != 0:
            D = self._stft(self.apply_preemphasis(y))
        else:
            D = self._stft(y)
        S = self._amp_to_db(np.abs(D))
        return self.normalize(S)

    def melspectrogram(self, y):
        if self.preemphasis != 0:
            D = self._stft(self.apply_preemphasis(y))
        else:
            D = self._stft(y)
        S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
        return self.normalize(S)

    def inv_spectrogram(self, spectrogram):
        """Converts spectrogram to waveform using librosa"""
        S = self.denormalize(spectrogram)
        S = self._db_to_amp(S)
        # Reconstruct phase
        if self.preemphasis != 0:
            return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
        return self._griffin_lim(S**self.power)

    def inv_melspectrogram(self, mel_spectrogram):
        '''Converts melspectrogram to waveform using librosa'''
        D = self.denormalize(mel_spectrogram)
        S = self._db_to_amp(D)
        S = self._mel_to_linear(S)  # Convert back to linear
        if self.preemphasis != 0:
            return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
        return self._griffin_lim(S**self.power)

    def out_linear_to_mel(self, linear_spec):
        S = self.denormalize(linear_spec)
        S = self._db_to_amp(S)
        S = self._linear_to_mel(np.abs(S))
        S = self._amp_to_db(S)
        mel = self.normalize(S)
        return mel

    ### STFT and ISTFT ###
    def _stft(self, y):
        return librosa.stft(
            y=y,
            n_fft=self.fft_size,
            hop_length=self.hop_length,
            win_length=self.win_length,
            pad_mode=self.stft_pad_mode,
        )

    def _istft(self, y):
        return librosa.istft(
            y, hop_length=self.hop_length, win_length=self.win_length)

    def _griffin_lim(self, S):
        angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
        S_complex = np.abs(S).astype(np.complex)
        y = self._istft(S_complex * angles)
        for _ in range(self.griffin_lim_iters):
            angles = np.exp(1j * np.angle(self._stft(y)))
            y = self._istft(S_complex * angles)
        return y

    def compute_stft_paddings(self, x, pad_sides=1):
        '''compute right padding (final frame) or both sides padding (first and final frames)
        '''
        assert pad_sides in (1, 2)
        pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
        if pad_sides == 1:
            return 0, pad
        return pad // 2, pad // 2 + pad % 2

    ### Compute F0 ###
    # def compute_f0(self, x):
    #     f0, t = pw.dio(
    #         x.astype(np.double),
    #         fs=self.sample_rate,
    #         f0_ceil=self.mel_fmax,
    #         frame_period=1000 * self.hop_length / self.sample_rate,
    #     )
    #     f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
    #     return f0

    ### Audio Processing ###
    def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
        window_length = int(self.sample_rate * min_silence_sec)
        hop_length = int(window_length / 4)
        threshold = self._db_to_amp(threshold_db)
        for x in range(hop_length, len(wav) - window_length, hop_length):
            if np.max(wav[x:x + window_length]) < threshold:
                return x + hop_length
        return len(wav)

    def trim_silence(self, wav):
        """ Trim silent parts with a threshold and 0.01 sec margin """
        margin = int(self.sample_rate * 0.01)
        wav = wav[margin:-margin]
        return librosa.effects.trim(
            wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]

    @staticmethod
    def sound_norm(x):
        return x / abs(x).max() * 0.9

    ### save and load ###
    def load_wav(self, filename, sr=None):
        if self.resample:
            x, sr = librosa.load(filename, sr=self.sample_rate)
        elif sr is None:
            x, sr = sf.read(filename)
            assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr)
        else:
            x, sr = librosa.load(filename, sr=sr)
        if self.do_trim_silence:
            try:
                x = self.trim_silence(x)
            except ValueError:
                print(f' [!] File cannot be trimmed for silence - {filename}')
        if self.do_sound_norm:
            x = self.sound_norm(x)
        return x

    def save_wav(self, wav, path):
        wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
        scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))

    @staticmethod
    def mulaw_encode(wav, qc):
        mu = 2 ** qc - 1
        # wav_abs = np.minimum(np.abs(wav), 1.0)
        signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
        # Quantize signal to the specified number of levels.
        signal = (signal + 1) / 2 * mu + 0.5
        return np.floor(signal,)

    @staticmethod
    def mulaw_decode(wav, qc):
        """Recovers waveform from quantized values."""
        mu = 2 ** qc - 1
        x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
        return x


    @staticmethod
    def encode_16bits(x):
        return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)

    @staticmethod
    def quantize(x, bits):
        return (x + 1.) * (2**bits - 1) / 2

    @staticmethod
    def dequantize(x, bits):
        return 2 * x / (2**bits - 1) - 1