|
import torch |
|
from torch import nn |
|
|
|
from TTS.tts.layers.gst_layers import GST |
|
from TTS.tts.layers.tacotron2 import Decoder, Encoder, Postnet |
|
from TTS.tts.models.tacotron_abstract import TacotronAbstract |
|
|
|
|
|
class Tacotron2(TacotronAbstract): |
|
"""Tacotron2 as in https://arxiv.org/abs/1712.05884 |
|
|
|
It's an autoregressive encoder-attention-decoder-postnet architecture. |
|
|
|
Args: |
|
num_chars (int): number of input characters to define the size of embedding layer. |
|
num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings. |
|
r (int): initial model reduction rate. |
|
postnet_output_dim (int, optional): postnet output channels. Defaults to 80. |
|
decoder_output_dim (int, optional): decoder output channels. Defaults to 80. |
|
attn_type (str, optional): attention type. Check ```TTS.tts.layers.common_layers.init_attn```. Defaults to 'original'. |
|
attn_win (bool, optional): enable/disable attention windowing. |
|
It especially useful at inference to keep attention alignment diagonal. Defaults to False. |
|
attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax". |
|
prenet_type (str, optional): prenet type for the decoder. Defaults to "original". |
|
prenet_dropout (bool, optional): prenet dropout rate. Defaults to True. |
|
forward_attn (bool, optional): enable/disable forward attention. |
|
It is only valid if ```attn_type``` is ```original```. Defaults to False. |
|
trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False. |
|
forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False. |
|
location_attn (bool, optional): enable/disable location sensitive attention. |
|
It is only valid if ```attn_type``` is ```original```. Defaults to True. |
|
attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5. |
|
separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient |
|
flow from stopnet to the rest of the model. Defaults to True. |
|
bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False. |
|
double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False. |
|
ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None. |
|
encoder_in_features (int, optional): input channels for the encoder. Defaults to 512. |
|
decoder_in_features (int, optional): input channels for the decoder. Defaults to 512. |
|
speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None. |
|
gst (bool, optional): enable/disable global style token learning. Defaults to False. |
|
gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512. |
|
gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4. |
|
gst_style_tokens (int, optional): number of GST tokens. Defaults to 10. |
|
gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False. |
|
""" |
|
def __init__(self, |
|
num_chars, |
|
num_speakers, |
|
r, |
|
postnet_output_dim=80, |
|
decoder_output_dim=80, |
|
attn_type='original', |
|
attn_win=False, |
|
attn_norm="softmax", |
|
prenet_type="original", |
|
prenet_dropout=True, |
|
forward_attn=False, |
|
trans_agent=False, |
|
forward_attn_mask=False, |
|
location_attn=True, |
|
attn_K=5, |
|
separate_stopnet=True, |
|
bidirectional_decoder=False, |
|
double_decoder_consistency=False, |
|
ddc_r=None, |
|
encoder_in_features=512, |
|
decoder_in_features=512, |
|
speaker_embedding_dim=None, |
|
gst=False, |
|
gst_embedding_dim=512, |
|
gst_num_heads=4, |
|
gst_style_tokens=10, |
|
gst_use_speaker_embedding=False): |
|
super(Tacotron2, |
|
self).__init__(num_chars, num_speakers, r, postnet_output_dim, |
|
decoder_output_dim, attn_type, attn_win, |
|
attn_norm, prenet_type, prenet_dropout, |
|
forward_attn, trans_agent, forward_attn_mask, |
|
location_attn, attn_K, separate_stopnet, |
|
bidirectional_decoder, double_decoder_consistency, |
|
ddc_r, encoder_in_features, decoder_in_features, |
|
speaker_embedding_dim, gst, gst_embedding_dim, |
|
gst_num_heads, gst_style_tokens, gst_use_speaker_embedding) |
|
|
|
|
|
if self.num_speakers > 1: |
|
if not self.embeddings_per_sample: |
|
speaker_embedding_dim = 512 |
|
self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim) |
|
self.speaker_embedding.weight.data.normal_(0, 0.3) |
|
|
|
|
|
if self.num_speakers > 1: |
|
self.decoder_in_features += speaker_embedding_dim |
|
|
|
|
|
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) |
|
|
|
|
|
self.encoder = Encoder(self.encoder_in_features) |
|
self.decoder = Decoder(self.decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, |
|
attn_norm, prenet_type, prenet_dropout, |
|
forward_attn, trans_agent, forward_attn_mask, |
|
location_attn, attn_K, separate_stopnet) |
|
self.postnet = Postnet(self.postnet_output_dim) |
|
|
|
|
|
if self.gst: |
|
self.gst_layer = GST(num_mel=80, |
|
num_heads=self.gst_num_heads, |
|
num_style_tokens=self.gst_style_tokens, |
|
gst_embedding_dim=self.gst_embedding_dim, |
|
speaker_embedding_dim=speaker_embedding_dim if self.embeddings_per_sample and self.gst_use_speaker_embedding else None) |
|
|
|
if self.bidirectional_decoder: |
|
self._init_backward_decoder() |
|
|
|
if self.double_decoder_consistency: |
|
self.coarse_decoder = Decoder( |
|
self.decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, |
|
attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, |
|
trans_agent, forward_attn_mask, location_attn, attn_K, |
|
separate_stopnet) |
|
|
|
@staticmethod |
|
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): |
|
mel_outputs = mel_outputs.transpose(1, 2) |
|
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) |
|
return mel_outputs, mel_outputs_postnet, alignments |
|
|
|
def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None, speaker_embeddings=None): |
|
""" |
|
Shapes: |
|
text: [B, T_in] |
|
text_lengths: [B] |
|
mel_specs: [B, T_out, C] |
|
mel_lengths: [B] |
|
speaker_ids: [B, 1] |
|
speaker_embeddings: [B, C] |
|
""" |
|
|
|
|
|
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) |
|
|
|
embedded_inputs = self.embedding(text).transpose(1, 2) |
|
|
|
encoder_outputs = self.encoder(embedded_inputs, text_lengths) |
|
if self.gst: |
|
|
|
encoder_outputs = self.compute_gst(encoder_outputs, |
|
mel_specs, |
|
speaker_embeddings if self.gst_use_speaker_embedding else None) |
|
if self.num_speakers > 1: |
|
if not self.embeddings_per_sample: |
|
|
|
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] |
|
else: |
|
|
|
speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1) |
|
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings) |
|
|
|
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs) |
|
|
|
|
|
decoder_outputs, alignments, stop_tokens = self.decoder( |
|
encoder_outputs, mel_specs, input_mask) |
|
|
|
if mel_lengths is not None: |
|
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs) |
|
|
|
postnet_outputs = self.postnet(decoder_outputs) |
|
postnet_outputs = decoder_outputs + postnet_outputs |
|
|
|
if output_mask is not None: |
|
postnet_outputs = postnet_outputs * output_mask.unsqueeze(1).expand_as(postnet_outputs) |
|
|
|
decoder_outputs, postnet_outputs, alignments = self.shape_outputs( |
|
decoder_outputs, postnet_outputs, alignments) |
|
if self.bidirectional_decoder: |
|
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask) |
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward |
|
if self.double_decoder_consistency: |
|
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask) |
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward |
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens |
|
|
|
@torch.no_grad() |
|
def inference(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None): |
|
embedded_inputs = self.embedding(text).transpose(1, 2) |
|
encoder_outputs = self.encoder.inference(embedded_inputs) |
|
|
|
if self.gst: |
|
|
|
encoder_outputs = self.compute_gst(encoder_outputs, |
|
style_mel, |
|
speaker_embeddings if self.gst_use_speaker_embedding else None) |
|
if self.num_speakers > 1: |
|
if not self.embeddings_per_sample: |
|
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] |
|
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings) |
|
|
|
decoder_outputs, alignments, stop_tokens = self.decoder.inference( |
|
encoder_outputs) |
|
postnet_outputs = self.postnet(decoder_outputs) |
|
postnet_outputs = decoder_outputs + postnet_outputs |
|
decoder_outputs, postnet_outputs, alignments = self.shape_outputs( |
|
decoder_outputs, postnet_outputs, alignments) |
|
return decoder_outputs, postnet_outputs, alignments, stop_tokens |
|
|
|
def inference_truncated(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None): |
|
""" |
|
Preserve model states for continuous inference |
|
""" |
|
embedded_inputs = self.embedding(text).transpose(1, 2) |
|
encoder_outputs = self.encoder.inference_truncated(embedded_inputs) |
|
|
|
if self.gst: |
|
|
|
encoder_outputs = self.compute_gst(encoder_outputs, |
|
style_mel, |
|
speaker_embeddings if self.gst_use_speaker_embedding else None) |
|
|
|
if self.num_speakers > 1: |
|
if not self.embeddings_per_sample: |
|
speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] |
|
encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings) |
|
|
|
mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( |
|
encoder_outputs) |
|
mel_outputs_postnet = self.postnet(mel_outputs) |
|
mel_outputs_postnet = mel_outputs + mel_outputs_postnet |
|
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( |
|
mel_outputs, mel_outputs_postnet, alignments) |
|
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens |
|
|