File size: 13,010 Bytes
2493d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
from torch import nn

from TTS.tts.layers.gst_layers import GST
from TTS.tts.layers.tacotron2 import Decoder, Encoder, Postnet
from TTS.tts.models.tacotron_abstract import TacotronAbstract

# TODO: match function arguments with tacotron
class Tacotron2(TacotronAbstract):
    """Tacotron2 as in https://arxiv.org/abs/1712.05884

    It's an autoregressive encoder-attention-decoder-postnet architecture.

    Args:
        num_chars (int): number of input characters to define the size of embedding layer.
        num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings.
        r (int): initial model reduction rate.
        postnet_output_dim (int, optional): postnet output channels. Defaults to 80.
        decoder_output_dim (int, optional): decoder output channels. Defaults to 80.
        attn_type (str, optional): attention type. Check ```TTS.tts.layers.common_layers.init_attn```. Defaults to 'original'.
        attn_win (bool, optional): enable/disable attention windowing.
            It especially useful at inference to keep attention alignment diagonal. Defaults to False.
        attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax".
        prenet_type (str, optional): prenet type for the decoder. Defaults to "original".
        prenet_dropout (bool, optional): prenet dropout rate. Defaults to True.
        forward_attn (bool, optional): enable/disable forward attention.
            It is only valid if ```attn_type``` is ```original```.  Defaults to False.
        trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False.
        forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False.
        location_attn (bool, optional): enable/disable location sensitive attention.
            It is only valid if ```attn_type``` is ```original```. Defaults to True.
        attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5.
        separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient
            flow from stopnet to the rest of the model.  Defaults to True.
        bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False.
        double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False.
        ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None.
        encoder_in_features (int, optional): input channels for the encoder. Defaults to 512.
        decoder_in_features (int, optional): input channels for the decoder. Defaults to 512.
        speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None.
        gst (bool, optional): enable/disable global style token learning. Defaults to False.
        gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512.
        gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4.
        gst_style_tokens (int, optional): number of GST tokens. Defaults to 10.
        gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False.
    """
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r,
                 postnet_output_dim=80,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="softmax",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 encoder_in_features=512,
                 decoder_in_features=512,
                 speaker_embedding_dim=None,
                 gst=False,
                 gst_embedding_dim=512,
                 gst_num_heads=4,
                 gst_style_tokens=10,
                 gst_use_speaker_embedding=False):
        super(Tacotron2,
              self).__init__(num_chars, num_speakers, r, postnet_output_dim,
                             decoder_output_dim, attn_type, attn_win,
                             attn_norm, prenet_type, prenet_dropout,
                             forward_attn, trans_agent, forward_attn_mask,
                             location_attn, attn_K, separate_stopnet,
                             bidirectional_decoder, double_decoder_consistency,
                             ddc_r, encoder_in_features, decoder_in_features,
                             speaker_embedding_dim, gst, gst_embedding_dim,
                             gst_num_heads, gst_style_tokens, gst_use_speaker_embedding)

        # speaker embedding layer
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embedding_dim = 512
                self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim)
                self.speaker_embedding.weight.data.normal_(0, 0.3)

        # speaker and gst embeddings is concat in decoder input
        if self.num_speakers > 1:
            self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim

        # embedding layer
        self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(self.decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
                               attn_norm, prenet_type, prenet_dropout,
                               forward_attn, trans_agent, forward_attn_mask,
                               location_attn, attn_K, separate_stopnet)
        self.postnet = Postnet(self.postnet_output_dim)

        # global style token layers
        if self.gst:
            self.gst_layer = GST(num_mel=80,
                                 num_heads=self.gst_num_heads,
                                 num_style_tokens=self.gst_style_tokens,
                                 gst_embedding_dim=self.gst_embedding_dim,
                                 speaker_embedding_dim=speaker_embedding_dim if self.embeddings_per_sample and self.gst_use_speaker_embedding else None)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
                attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
                trans_agent, forward_attn_mask, location_attn, attn_K,
                separate_stopnet)

    @staticmethod
    def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
        mel_outputs = mel_outputs.transpose(1, 2)
        mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
        return mel_outputs, mel_outputs_postnet, alignments

    def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None, speaker_embeddings=None):
        """
        Shapes:
            text: [B, T_in]
            text_lengths: [B]
            mel_specs: [B, T_out, C]
            mel_lengths: [B]
            speaker_ids: [B, 1]
            speaker_embeddings: [B, C]
        """
        # compute mask for padding
        # B x T_in_max (boolean)
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x D_embed x T_in_max
        embedded_inputs = self.embedding(text).transpose(1, 2)
        # B x T_in_max x D_en
        encoder_outputs = self.encoder(embedded_inputs, text_lengths)
        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs,
                                               mel_specs,
                                               speaker_embeddings if self.gst_use_speaker_embedding else None)
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
            else:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
            encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)

        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)

        # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if mel_lengths is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
        # B x mel_dim x T_out
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(1).expand_as(postnet_outputs)
        # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask)
            return  decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    @torch.no_grad()
    def inference(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None):
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference(embedded_inputs)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs,
                                               style_mel,
                                               speaker_embeddings if self.gst_use_speaker_embedding else None)
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
            encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)

        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    def inference_truncated(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None):
        """
        Preserve model states for continuous inference
        """
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference_truncated(embedded_inputs)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs,
                                               style_mel,
                                               speaker_embeddings if self.gst_use_speaker_embedding else None)

        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None]
            encoder_outputs = self._concat_speaker_embedding(encoder_outputs, speaker_embeddings)

        mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
            encoder_outputs)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens