voice-xtts2 / TTS /bin /train_vocoder_wavernn.py
antoniomae1234's picture
changes in flenema
2493d72 verified
import argparse
import os
import sys
import traceback
import time
import glob
import random
import torch
from torch.utils.data import DataLoader
# from torch.utils.data.distributed import DistributedSampler
from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.radam import RAdam
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.training import setup_torch_training_env
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.generic_utils import (
KeepAverage,
count_parameters,
create_experiment_folder,
get_git_branch,
remove_experiment_folder,
set_init_dict,
)
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.datasets.preprocess import (
load_wav_data,
load_wav_feat_data
)
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
from TTS.vocoder.utils.generic_utils import setup_wavernn
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
use_cuda, num_gpus = setup_torch_training_env(True, True)
def setup_loader(ap, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
dataset = WaveRNNDataset(ap=ap,
items=eval_data if is_val else train_data,
seq_len=c.seq_len,
hop_len=ap.hop_length,
pad=c.padding,
mode=c.mode,
mulaw=c.mulaw,
is_training=not is_val,
verbose=verbose,
)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
shuffle=True,
collate_fn=dataset.collate,
batch_size=c.batch_size,
num_workers=c.num_val_loader_workers
if is_val
else c.num_loader_workers,
pin_memory=True,
)
return loader
def format_data(data):
# setup input data
x_input = data[0]
mels = data[1]
y_coarse = data[2]
# dispatch data to GPU
if use_cuda:
x_input = x_input.cuda(non_blocking=True)
mels = mels.cuda(non_blocking=True)
y_coarse = y_coarse.cuda(non_blocking=True)
return x_input, mels, y_coarse
def train(model, optimizer, criterion, scheduler, scaler, ap, global_step, epoch):
# create train loader
data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
model.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(len(data_loader.dataset) /
(c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
c_logger.print_train_start()
# train loop
for num_iter, data in enumerate(data_loader):
start_time = time.time()
x_input, mels, y_coarse = format_data(data)
loader_time = time.time() - end_time
global_step += 1
optimizer.zero_grad()
if c.mixed_precision:
# mixed precision training
with torch.cuda.amp.autocast():
y_hat = model(x_input, mels)
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
y_coarse = y_coarse.float()
y_coarse = y_coarse.unsqueeze(-1)
# compute losses
loss = criterion(y_hat, y_coarse)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
if c.grad_clip > 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), c.grad_clip)
scaler.step(optimizer)
scaler.update()
else:
# full precision training
y_hat = model(x_input, mels)
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
y_coarse = y_coarse.float()
y_coarse = y_coarse.unsqueeze(-1)
# compute losses
loss = criterion(y_hat, y_coarse)
if loss.item() is None:
raise RuntimeError(" [!] None loss. Exiting ...")
loss.backward()
if c.grad_clip > 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), c.grad_clip)
optimizer.step()
if scheduler is not None:
scheduler.step()
# get the current learning rate
cur_lr = list(optimizer.param_groups)[0]["lr"]
step_time = time.time() - start_time
epoch_time += step_time
update_train_values = dict()
loss_dict = dict()
loss_dict["model_loss"] = loss.item()
for key, value in loss_dict.items():
update_train_values["avg_" + key] = value
update_train_values["avg_loader_time"] = loader_time
update_train_values["avg_step_time"] = step_time
keep_avg.update_values(update_train_values)
# print training stats
if global_step % c.print_step == 0:
log_dict = {"step_time": [step_time, 2],
"loader_time": [loader_time, 4],
"current_lr": cur_lr,
}
c_logger.print_train_step(batch_n_iter,
num_iter,
global_step,
log_dict,
loss_dict,
keep_avg.avg_values,
)
# plot step stats
if global_step % 10 == 0:
iter_stats = {"lr": cur_lr, "step_time": step_time}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
# save checkpoint
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
# synthesize a full voice
rand_idx = random.randrange(0, len(train_data))
wav_path = train_data[rand_idx] if not isinstance(
train_data[rand_idx], (tuple, list)) else train_data[rand_idx][0]
wav = ap.load_wav(wav_path)
ground_mel = ap.melspectrogram(wav)
sample_wav = model.generate(ground_mel,
c.batched,
c.target_samples,
c.overlap_samples,
use_cuda
)
predict_mel = ap.melspectrogram(sample_wav)
# compute spectrograms
figures = {"train/ground_truth": plot_spectrogram(ground_mel.T),
"train/prediction": plot_spectrogram(predict_mel.T)
}
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
tb_logger.tb_train_audios(
global_step, {
"train/audio": sample_wav}, c.audio["sample_rate"]
)
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
# Plot Training Epoch Stats
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
# TODO: plot model stats
# if c.tb_model_param_stats:
# tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(model, criterion, ap, global_step, epoch):
# create train loader
data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
end_time = time.time()
c_logger.print_eval_start()
with torch.no_grad():
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
x_input, mels, y_coarse = format_data(data)
loader_time = time.time() - end_time
global_step += 1
y_hat = model(x_input, mels)
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
y_coarse = y_coarse.float()
y_coarse = y_coarse.unsqueeze(-1)
loss = criterion(y_hat, y_coarse)
# Compute avg loss
# if num_gpus > 1:
# loss = reduce_tensor(loss.data, num_gpus)
loss_dict = dict()
loss_dict["model_loss"] = loss.item()
step_time = time.time() - start_time
epoch_time += step_time
# update avg stats
update_eval_values = dict()
for key, value in loss_dict.items():
update_eval_values["avg_" + key] = value
update_eval_values["avg_loader_time"] = loader_time
update_eval_values["avg_step_time"] = step_time
keep_avg.update_values(update_eval_values)
# print eval stats
if c.print_eval:
c_logger.print_eval_step(
num_iter, loss_dict, keep_avg.avg_values)
if epoch % c.test_every_epochs == 0 and epoch != 0:
# synthesize a full voice
rand_idx = random.randrange(0, len(eval_data))
wav_path = eval_data[rand_idx] if not isinstance(
eval_data[rand_idx], (tuple, list)) else eval_data[rand_idx][0]
wav = ap.load_wav(wav_path)
ground_mel = ap.melspectrogram(wav)
sample_wav = model.generate(ground_mel,
c.batched,
c.target_samples,
c.overlap_samples,
use_cuda
)
predict_mel = ap.melspectrogram(sample_wav)
# Sample audio
tb_logger.tb_eval_audios(
global_step, {
"eval/audio": sample_wav}, c.audio["sample_rate"]
)
# compute spectrograms
figures = {"eval/ground_truth": plot_spectrogram(ground_mel.T),
"eval/prediction": plot_spectrogram(predict_mel.T)
}
tb_logger.tb_eval_figures(global_step, figures)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global train_data, eval_data
# setup audio processor
ap = AudioProcessor(**c.audio)
# print(f" > Loading wavs from: {c.data_path}")
# if c.feature_path is not None:
# print(f" > Loading features from: {c.feature_path}")
# eval_data, train_data = load_wav_feat_data(
# c.data_path, c.feature_path, c.eval_split_size
# )
# else:
# mel_feat_path = os.path.join(OUT_PATH, "mel")
# feat_data = find_feat_files(mel_feat_path)
# if feat_data:
# print(f" > Loading features from: {mel_feat_path}")
# eval_data, train_data = load_wav_feat_data(
# c.data_path, mel_feat_path, c.eval_split_size
# )
# else:
# print(" > No feature data found. Preprocessing...")
# # preprocessing feature data from given wav files
# preprocess_wav_files(OUT_PATH, CONFIG, ap)
# eval_data, train_data = load_wav_feat_data(
# c.data_path, mel_feat_path, c.eval_split_size
# )
print(f" > Loading wavs from: {c.data_path}")
if c.feature_path is not None:
print(f" > Loading features from: {c.feature_path}")
eval_data, train_data = load_wav_feat_data(
c.data_path, c.feature_path, c.eval_split_size)
else:
eval_data, train_data = load_wav_data(
c.data_path, c.eval_split_size)
# setup model
model_wavernn = setup_wavernn(c)
# setup amp scaler
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
# define train functions
if c.mode == "mold":
criterion = discretized_mix_logistic_loss
elif c.mode == "gauss":
criterion = gaussian_loss
elif isinstance(c.mode, int):
criterion = torch.nn.CrossEntropyLoss()
if use_cuda:
model_wavernn.cuda()
if isinstance(c.mode, int):
criterion.cuda()
optimizer = RAdam(model_wavernn.parameters(), lr=c.lr, weight_decay=0)
scheduler = None
if "lr_scheduler" in c:
scheduler = getattr(torch.optim.lr_scheduler, c.lr_scheduler)
scheduler = scheduler(optimizer, **c.lr_scheduler_params)
# slow start for the first 5 epochs
# lr_lambda = lambda epoch: min(epoch / c.warmup_steps, 1)
# scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
# restore any checkpoint
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location="cpu")
try:
print(" > Restoring Model...")
model_wavernn.load_state_dict(checkpoint["model"])
print(" > Restoring Optimizer...")
optimizer.load_state_dict(checkpoint["optimizer"])
if "scheduler" in checkpoint:
print(" > Restoring Generator LR Scheduler...")
scheduler.load_state_dict(checkpoint["scheduler"])
scheduler.optimizer = optimizer
if "scaler" in checkpoint and c.mixed_precision:
print(" > Restoring AMP Scaler...")
scaler.load_state_dict(checkpoint["scaler"])
except RuntimeError:
# retore only matching layers.
print(" > Partial model initialization...")
model_dict = model_wavernn.state_dict()
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
model_wavernn.load_state_dict(model_dict)
print(" > Model restored from step %d" %
checkpoint["step"], flush=True)
args.restore_step = checkpoint["step"]
else:
args.restore_step = 0
# DISTRIBUTED
# if num_gpus > 1:
# model = apply_gradient_allreduce(model)
num_parameters = count_parameters(model_wavernn)
print(" > Model has {} parameters".format(num_parameters), flush=True)
if "best_loss" not in locals():
best_loss = float("inf")
global_step = args.restore_step
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
_, global_step = train(model_wavernn, optimizer,
criterion, scheduler, scaler, ap, global_step, epoch)
eval_avg_loss_dict = evaluate(
model_wavernn, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = eval_avg_loss_dict["avg_model_loss"]
best_loss = save_best_model(
target_loss,
best_loss,
model_wavernn,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=eval_avg_loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--continue_path",
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default="",
required="--config_path" not in sys.argv,
)
parser.add_argument(
"--restore_path",
type=str,
help="Model file to be restored. Use to finetune a model.",
default="",
)
parser.add_argument(
"--config_path",
type=str,
help="Path to config file for training.",
required="--continue_path" not in sys.argv,
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="Do not verify commit integrity to run training.",
)
# DISTRUBUTED
parser.add_argument(
"--rank",
type=int,
default=0,
help="DISTRIBUTED: process rank for distributed training.",
)
parser.add_argument(
"--group_id", type=str, default="", help="DISTRIBUTED: process group id."
)
args = parser.parse_args()
if args.continue_path != "":
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
list_of_files = glob.glob(
args.continue_path + "/*.pth.tar"
) # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = args.continue_path
if args.continue_path == "":
OUT_PATH = create_experiment_folder(
c.output_path, c.run_name, args.debug
)
AUDIO_PATH = os.path.join(OUT_PATH, "test_audios")
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(
c, args.config_path, OUT_PATH, new_fields
)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name="VOCODER")
# write model desc to tensorboard
tb_logger.tb_add_text("model-description", c["run_description"], 0)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)