File size: 19,468 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import argparse
import os
import sys
import traceback
import time
import glob
import random
import torch
from torch.utils.data import DataLoader
# from torch.utils.data.distributed import DistributedSampler
from TTS.tts.utils.visual import plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.radam import RAdam
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.training import setup_torch_training_env
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.generic_utils import (
KeepAverage,
count_parameters,
create_experiment_folder,
get_git_branch,
remove_experiment_folder,
set_init_dict,
)
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.datasets.preprocess import (
load_wav_data,
load_wav_feat_data
)
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
from TTS.vocoder.utils.generic_utils import setup_wavernn
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
use_cuda, num_gpus = setup_torch_training_env(True, True)
def setup_loader(ap, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
dataset = WaveRNNDataset(ap=ap,
items=eval_data if is_val else train_data,
seq_len=c.seq_len,
hop_len=ap.hop_length,
pad=c.padding,
mode=c.mode,
mulaw=c.mulaw,
is_training=not is_val,
verbose=verbose,
)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
shuffle=True,
collate_fn=dataset.collate,
batch_size=c.batch_size,
num_workers=c.num_val_loader_workers
if is_val
else c.num_loader_workers,
pin_memory=True,
)
return loader
def format_data(data):
# setup input data
x_input = data[0]
mels = data[1]
y_coarse = data[2]
# dispatch data to GPU
if use_cuda:
x_input = x_input.cuda(non_blocking=True)
mels = mels.cuda(non_blocking=True)
y_coarse = y_coarse.cuda(non_blocking=True)
return x_input, mels, y_coarse
def train(model, optimizer, criterion, scheduler, scaler, ap, global_step, epoch):
# create train loader
data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
model.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(len(data_loader.dataset) /
(c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
c_logger.print_train_start()
# train loop
for num_iter, data in enumerate(data_loader):
start_time = time.time()
x_input, mels, y_coarse = format_data(data)
loader_time = time.time() - end_time
global_step += 1
optimizer.zero_grad()
if c.mixed_precision:
# mixed precision training
with torch.cuda.amp.autocast():
y_hat = model(x_input, mels)
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
y_coarse = y_coarse.float()
y_coarse = y_coarse.unsqueeze(-1)
# compute losses
loss = criterion(y_hat, y_coarse)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
if c.grad_clip > 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), c.grad_clip)
scaler.step(optimizer)
scaler.update()
else:
# full precision training
y_hat = model(x_input, mels)
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
y_coarse = y_coarse.float()
y_coarse = y_coarse.unsqueeze(-1)
# compute losses
loss = criterion(y_hat, y_coarse)
if loss.item() is None:
raise RuntimeError(" [!] None loss. Exiting ...")
loss.backward()
if c.grad_clip > 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), c.grad_clip)
optimizer.step()
if scheduler is not None:
scheduler.step()
# get the current learning rate
cur_lr = list(optimizer.param_groups)[0]["lr"]
step_time = time.time() - start_time
epoch_time += step_time
update_train_values = dict()
loss_dict = dict()
loss_dict["model_loss"] = loss.item()
for key, value in loss_dict.items():
update_train_values["avg_" + key] = value
update_train_values["avg_loader_time"] = loader_time
update_train_values["avg_step_time"] = step_time
keep_avg.update_values(update_train_values)
# print training stats
if global_step % c.print_step == 0:
log_dict = {"step_time": [step_time, 2],
"loader_time": [loader_time, 4],
"current_lr": cur_lr,
}
c_logger.print_train_step(batch_n_iter,
num_iter,
global_step,
log_dict,
loss_dict,
keep_avg.avg_values,
)
# plot step stats
if global_step % 10 == 0:
iter_stats = {"lr": cur_lr, "step_time": step_time}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
# save checkpoint
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
# synthesize a full voice
rand_idx = random.randrange(0, len(train_data))
wav_path = train_data[rand_idx] if not isinstance(
train_data[rand_idx], (tuple, list)) else train_data[rand_idx][0]
wav = ap.load_wav(wav_path)
ground_mel = ap.melspectrogram(wav)
sample_wav = model.generate(ground_mel,
c.batched,
c.target_samples,
c.overlap_samples,
use_cuda
)
predict_mel = ap.melspectrogram(sample_wav)
# compute spectrograms
figures = {"train/ground_truth": plot_spectrogram(ground_mel.T),
"train/prediction": plot_spectrogram(predict_mel.T)
}
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
tb_logger.tb_train_audios(
global_step, {
"train/audio": sample_wav}, c.audio["sample_rate"]
)
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
# Plot Training Epoch Stats
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
# TODO: plot model stats
# if c.tb_model_param_stats:
# tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(model, criterion, ap, global_step, epoch):
# create train loader
data_loader = setup_loader(ap, is_val=True, verbose=(epoch == 0))
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
end_time = time.time()
c_logger.print_eval_start()
with torch.no_grad():
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
x_input, mels, y_coarse = format_data(data)
loader_time = time.time() - end_time
global_step += 1
y_hat = model(x_input, mels)
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
y_coarse = y_coarse.float()
y_coarse = y_coarse.unsqueeze(-1)
loss = criterion(y_hat, y_coarse)
# Compute avg loss
# if num_gpus > 1:
# loss = reduce_tensor(loss.data, num_gpus)
loss_dict = dict()
loss_dict["model_loss"] = loss.item()
step_time = time.time() - start_time
epoch_time += step_time
# update avg stats
update_eval_values = dict()
for key, value in loss_dict.items():
update_eval_values["avg_" + key] = value
update_eval_values["avg_loader_time"] = loader_time
update_eval_values["avg_step_time"] = step_time
keep_avg.update_values(update_eval_values)
# print eval stats
if c.print_eval:
c_logger.print_eval_step(
num_iter, loss_dict, keep_avg.avg_values)
if epoch % c.test_every_epochs == 0 and epoch != 0:
# synthesize a full voice
rand_idx = random.randrange(0, len(eval_data))
wav_path = eval_data[rand_idx] if not isinstance(
eval_data[rand_idx], (tuple, list)) else eval_data[rand_idx][0]
wav = ap.load_wav(wav_path)
ground_mel = ap.melspectrogram(wav)
sample_wav = model.generate(ground_mel,
c.batched,
c.target_samples,
c.overlap_samples,
use_cuda
)
predict_mel = ap.melspectrogram(sample_wav)
# Sample audio
tb_logger.tb_eval_audios(
global_step, {
"eval/audio": sample_wav}, c.audio["sample_rate"]
)
# compute spectrograms
figures = {"eval/ground_truth": plot_spectrogram(ground_mel.T),
"eval/prediction": plot_spectrogram(predict_mel.T)
}
tb_logger.tb_eval_figures(global_step, figures)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
return keep_avg.avg_values
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global train_data, eval_data
# setup audio processor
ap = AudioProcessor(**c.audio)
# print(f" > Loading wavs from: {c.data_path}")
# if c.feature_path is not None:
# print(f" > Loading features from: {c.feature_path}")
# eval_data, train_data = load_wav_feat_data(
# c.data_path, c.feature_path, c.eval_split_size
# )
# else:
# mel_feat_path = os.path.join(OUT_PATH, "mel")
# feat_data = find_feat_files(mel_feat_path)
# if feat_data:
# print(f" > Loading features from: {mel_feat_path}")
# eval_data, train_data = load_wav_feat_data(
# c.data_path, mel_feat_path, c.eval_split_size
# )
# else:
# print(" > No feature data found. Preprocessing...")
# # preprocessing feature data from given wav files
# preprocess_wav_files(OUT_PATH, CONFIG, ap)
# eval_data, train_data = load_wav_feat_data(
# c.data_path, mel_feat_path, c.eval_split_size
# )
print(f" > Loading wavs from: {c.data_path}")
if c.feature_path is not None:
print(f" > Loading features from: {c.feature_path}")
eval_data, train_data = load_wav_feat_data(
c.data_path, c.feature_path, c.eval_split_size)
else:
eval_data, train_data = load_wav_data(
c.data_path, c.eval_split_size)
# setup model
model_wavernn = setup_wavernn(c)
# setup amp scaler
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
# define train functions
if c.mode == "mold":
criterion = discretized_mix_logistic_loss
elif c.mode == "gauss":
criterion = gaussian_loss
elif isinstance(c.mode, int):
criterion = torch.nn.CrossEntropyLoss()
if use_cuda:
model_wavernn.cuda()
if isinstance(c.mode, int):
criterion.cuda()
optimizer = RAdam(model_wavernn.parameters(), lr=c.lr, weight_decay=0)
scheduler = None
if "lr_scheduler" in c:
scheduler = getattr(torch.optim.lr_scheduler, c.lr_scheduler)
scheduler = scheduler(optimizer, **c.lr_scheduler_params)
# slow start for the first 5 epochs
# lr_lambda = lambda epoch: min(epoch / c.warmup_steps, 1)
# scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
# restore any checkpoint
if args.restore_path:
checkpoint = torch.load(args.restore_path, map_location="cpu")
try:
print(" > Restoring Model...")
model_wavernn.load_state_dict(checkpoint["model"])
print(" > Restoring Optimizer...")
optimizer.load_state_dict(checkpoint["optimizer"])
if "scheduler" in checkpoint:
print(" > Restoring Generator LR Scheduler...")
scheduler.load_state_dict(checkpoint["scheduler"])
scheduler.optimizer = optimizer
if "scaler" in checkpoint and c.mixed_precision:
print(" > Restoring AMP Scaler...")
scaler.load_state_dict(checkpoint["scaler"])
except RuntimeError:
# retore only matching layers.
print(" > Partial model initialization...")
model_dict = model_wavernn.state_dict()
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
model_wavernn.load_state_dict(model_dict)
print(" > Model restored from step %d" %
checkpoint["step"], flush=True)
args.restore_step = checkpoint["step"]
else:
args.restore_step = 0
# DISTRIBUTED
# if num_gpus > 1:
# model = apply_gradient_allreduce(model)
num_parameters = count_parameters(model_wavernn)
print(" > Model has {} parameters".format(num_parameters), flush=True)
if "best_loss" not in locals():
best_loss = float("inf")
global_step = args.restore_step
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
_, global_step = train(model_wavernn, optimizer,
criterion, scheduler, scaler, ap, global_step, epoch)
eval_avg_loss_dict = evaluate(
model_wavernn, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = eval_avg_loss_dict["avg_model_loss"]
best_loss = save_best_model(
target_loss,
best_loss,
model_wavernn,
optimizer,
scheduler,
None,
None,
None,
global_step,
epoch,
OUT_PATH,
model_losses=eval_avg_loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--continue_path",
type=str,
help='Training output folder to continue training. Use to continue a training. If it is used, "config_path" is ignored.',
default="",
required="--config_path" not in sys.argv,
)
parser.add_argument(
"--restore_path",
type=str,
help="Model file to be restored. Use to finetune a model.",
default="",
)
parser.add_argument(
"--config_path",
type=str,
help="Path to config file for training.",
required="--continue_path" not in sys.argv,
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="Do not verify commit integrity to run training.",
)
# DISTRUBUTED
parser.add_argument(
"--rank",
type=int,
default=0,
help="DISTRIBUTED: process rank for distributed training.",
)
parser.add_argument(
"--group_id", type=str, default="", help="DISTRIBUTED: process group id."
)
args = parser.parse_args()
if args.continue_path != "":
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
list_of_files = glob.glob(
args.continue_path + "/*.pth.tar"
) # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)
# check_config(c)
_ = os.path.dirname(os.path.realpath(__file__))
OUT_PATH = args.continue_path
if args.continue_path == "":
OUT_PATH = create_experiment_folder(
c.output_path, c.run_name, args.debug
)
AUDIO_PATH = os.path.join(OUT_PATH, "test_audios")
c_logger = ConsoleLogger()
if args.rank == 0:
os.makedirs(AUDIO_PATH, exist_ok=True)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(
c, args.config_path, OUT_PATH, new_fields
)
os.chmod(AUDIO_PATH, 0o775)
os.chmod(OUT_PATH, 0o775)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name="VOCODER")
# write model desc to tensorboard
tb_logger.tb_add_text("model-description", c["run_description"], 0)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)
|