|
--- |
|
language: sah |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: Sakha XLSR Wav2Vec2 Large 53 by Anton Lozhkov |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice sah |
|
type: common_voice |
|
args: sah |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 32.23 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Sakha |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "sah", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") |
|
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Sakha test data of Common Voice. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
import urllib.request |
|
import tarfile |
|
import pandas as pd |
|
from tqdm.auto import tqdm |
|
from datasets import load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
# Download the raw data instead of using HF datasets to save disk space |
|
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz" |
|
filestream = urllib.request.urlopen(data_url) |
|
data_file = tarfile.open(fileobj=filestream, mode="r|gz") |
|
data_file.extractall() |
|
|
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") |
|
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") |
|
model.to("cuda") |
|
|
|
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sah/test.tsv", sep='\t') |
|
clips_path = "cv-corpus-6.1-2020-12-11/sah/clips/" |
|
|
|
def clean_sentence(sent): |
|
sent = sent.lower() |
|
# replace non-alpha characters with space |
|
sent = "".join(ch if ch.isalpha() else " " for ch in sent) |
|
# remove repeated spaces |
|
sent = " ".join(sent.split()) |
|
return sent |
|
|
|
targets = [] |
|
preds = [] |
|
|
|
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): |
|
row["sentence"] = clean_sentence(row["sentence"]) |
|
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) |
|
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) |
|
row["speech"] = resampler(speech_array).squeeze().numpy() |
|
|
|
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
targets.append(row["sentence"]) |
|
preds.append(processor.batch_decode(pred_ids)[0]) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) |
|
``` |
|
|
|
**Test Result**: 32.23 % |
|
|
|
|
|
## Training |
|
|
|
The Common Voice `train` and `validation` datasets were used for training. |
|
|
|
|