speech-test commited on
Commit
52cd932
1 Parent(s): 8284447

Flexible resampling, just in case

Browse files
Files changed (1) hide show
  1. README.md +2 -4
README.md CHANGED
@@ -82,7 +82,7 @@ from tqdm.auto import tqdm
82
  from datasets import load_metric
83
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
84
 
85
- # Download the raw data instead of using HF datasets to save space
86
  data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz"
87
  filestream = urllib.request.urlopen(data_url)
88
  data_file = tarfile.open(fileobj=filestream, mode="r|gz")
@@ -105,14 +105,13 @@ def clean_sentence(sent):
105
  sent = " ".join(sent.split())
106
  return sent
107
 
108
- resampler = torchaudio.transforms.Resample(48_000, 16_000)
109
-
110
  targets = []
111
  preds = []
112
 
113
  for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
114
  row["sentence"] = clean_sentence(row["sentence"])
115
  speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
 
116
  row["speech"] = resampler(speech_array).squeeze().numpy()
117
 
118
  inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
@@ -135,4 +134,3 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=target
135
 
136
  The Common Voice `train` and `validation` datasets were used for training.
137
 
138
- The script used for training can be found [here](github.com)
 
82
  from datasets import load_metric
83
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
84
 
85
+ # Download the raw data instead of using HF datasets to save disk space
86
  data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz"
87
  filestream = urllib.request.urlopen(data_url)
88
  data_file = tarfile.open(fileobj=filestream, mode="r|gz")
 
105
  sent = " ".join(sent.split())
106
  return sent
107
 
 
 
108
  targets = []
109
  preds = []
110
 
111
  for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
112
  row["sentence"] = clean_sentence(row["sentence"])
113
  speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
114
+ resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
115
  row["speech"] = resampler(speech_array).squeeze().numpy()
116
 
117
  inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
 
134
 
135
  The Common Voice `train` and `validation` datasets were used for training.
136