|
--- |
|
license: mit |
|
base_model: indobenchmark/indobart-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: bdc2024-indobartv2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bdc2024-indobartv2 |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobart-v2](https://huggingface.co/indobenchmark/indobart-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3023 |
|
- Accuracy: 0.7162 |
|
- Balanced Accuracy: 0.4029 |
|
- Precision: 0.7027 |
|
- Recall: 0.7162 |
|
- F1: 0.6930 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 242 | 0.9849 | 0.7271 | 0.3492 | 0.6729 | 0.7271 | 0.6848 | |
|
| No log | 2.0 | 484 | 0.9894 | 0.7293 | 0.3458 | 0.6597 | 0.7293 | 0.6824 | |
|
| 0.7769 | 3.0 | 726 | 1.0067 | 0.7205 | 0.3858 | 0.6719 | 0.7205 | 0.6898 | |
|
| 0.7769 | 4.0 | 968 | 1.1637 | 0.7314 | 0.3937 | 0.7281 | 0.7314 | 0.7006 | |
|
| 0.3534 | 5.0 | 1210 | 1.3002 | 0.7358 | 0.3892 | 0.7103 | 0.7358 | 0.6999 | |
|
| 0.3534 | 6.0 | 1452 | 1.3023 | 0.7162 | 0.4029 | 0.7027 | 0.7162 | 0.6930 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.13.3 |
|
|