bdc2024-indobartv2 / README.md
andrianangg's picture
End of training
442dcfa verified
metadata
license: mit
base_model: indobenchmark/indobart-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bdc2024-indobartv2
    results: []

bdc2024-indobartv2

This model is a fine-tuned version of indobenchmark/indobart-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3023
  • Accuracy: 0.7162
  • Balanced Accuracy: 0.4029
  • Precision: 0.7027
  • Recall: 0.7162
  • F1: 0.6930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced Accuracy Precision Recall F1
No log 1.0 242 0.9849 0.7271 0.3492 0.6729 0.7271 0.6848
No log 2.0 484 0.9894 0.7293 0.3458 0.6597 0.7293 0.6824
0.7769 3.0 726 1.0067 0.7205 0.3858 0.6719 0.7205 0.6898
0.7769 4.0 968 1.1637 0.7314 0.3937 0.7281 0.7314 0.7006
0.3534 5.0 1210 1.3002 0.7358 0.3892 0.7103 0.7358 0.6999
0.3534 6.0 1452 1.3023 0.7162 0.4029 0.7027 0.7162 0.6930

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.13.3