bdc2024-indobartv2 / README.md
andrianangg's picture
End of training
639dc0d verified
|
raw
history blame
2.18 kB
metadata
license: mit
base_model: indobenchmark/indobart
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bdc2024-indobartv2
    results: []

bdc2024-indobartv2

This model is a fine-tuned version of indobenchmark/indobart on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1750
  • Accuracy: 0.9432
  • Balanced Accuracy: 0.8553
  • Precision: 0.9451
  • Recall: 0.9432
  • F1: 0.9424

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced Accuracy Precision Recall F1
No log 1.0 271 0.7994 0.7664 0.4357 0.7110 0.7664 0.7293
0.8301 2.0 542 0.5663 0.8231 0.5167 0.8054 0.8231 0.7946
0.8301 3.0 813 0.3837 0.8690 0.6027 0.8607 0.8690 0.8564
0.4329 4.0 1084 0.2614 0.9192 0.7725 0.9192 0.9192 0.9161
0.4329 5.0 1355 0.2037 0.9345 0.8442 0.9345 0.9345 0.9330
0.2228 6.0 1626 0.1750 0.9432 0.8553 0.9451 0.9432 0.9424

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.13.3