--- license: mit base_model: indobenchmark/indobart tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bdc2024-indobartv2 results: [] --- # bdc2024-indobartv2 This model is a fine-tuned version of [indobenchmark/indobart](https://huggingface.co/indobenchmark/indobart) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Accuracy: 0.9432 - Balanced Accuracy: 0.8553 - Precision: 0.9451 - Recall: 0.9432 - F1: 0.9424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| | No log | 1.0 | 271 | 0.7994 | 0.7664 | 0.4357 | 0.7110 | 0.7664 | 0.7293 | | 0.8301 | 2.0 | 542 | 0.5663 | 0.8231 | 0.5167 | 0.8054 | 0.8231 | 0.7946 | | 0.8301 | 3.0 | 813 | 0.3837 | 0.8690 | 0.6027 | 0.8607 | 0.8690 | 0.8564 | | 0.4329 | 4.0 | 1084 | 0.2614 | 0.9192 | 0.7725 | 0.9192 | 0.9192 | 0.9161 | | 0.4329 | 5.0 | 1355 | 0.2037 | 0.9345 | 0.8442 | 0.9345 | 0.9345 | 0.9330 | | 0.2228 | 6.0 | 1626 | 0.1750 | 0.9432 | 0.8553 | 0.9451 | 0.9432 | 0.9424 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.13.3