|
--- |
|
license: mit |
|
datasets: |
|
- amphion/Emilia-Dataset |
|
language: |
|
- en |
|
- zh |
|
- ko |
|
- ja |
|
- fr |
|
- de |
|
base_model: |
|
- amphion/MaskGCT |
|
pipeline_tag: text-to-speech |
|
--- |
|
## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer |
|
|
|
[![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct) |
|
|
|
## Quickstart |
|
|
|
**Clone and install** |
|
|
|
```bash |
|
git clone https://github.com/open-mmlab/Amphion.git |
|
# create env |
|
bash ./models/tts/maskgct/env.sh |
|
``` |
|
|
|
**Model download** |
|
|
|
We provide the following pretrained checkpoints: |
|
|
|
|
|
| Model Name | Description | |
|
|-------------------|-------------| |
|
| [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. | |
|
| [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. | |
|
| [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. | |
|
| [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. | |
|
|
|
You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api. |
|
|
|
```python |
|
from huggingface_hub import hf_hub_download |
|
|
|
# download semantic codec ckpt |
|
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors") |
|
|
|
# download acoustic codec ckpt |
|
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors") |
|
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors") |
|
|
|
# download t2s model ckpt |
|
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors") |
|
|
|
# download s2a model ckpt |
|
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors") |
|
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors") |
|
``` |
|
|
|
**Basic Usage** |
|
|
|
You can use the following code to generate speech from text and a prompt speech. |
|
```python |
|
from models.tts.maskgct.maskgct_utils import * |
|
from huggingface_hub import hf_hub_download |
|
import safetensors |
|
import soundfile as sf |
|
|
|
if __name__ == "__main__": |
|
|
|
# build model |
|
device = torch.device("cuda:0") |
|
cfg_path = "./models/tts/maskgct/config/maskgct.json" |
|
cfg = load_config(cfg_path) |
|
# 1. build semantic model (w2v-bert-2.0) |
|
semantic_model, semantic_mean, semantic_std = build_semantic_model(device) |
|
# 2. build semantic codec |
|
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device) |
|
# 3. build acoustic codec |
|
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device) |
|
# 4. build t2s model |
|
t2s_model = build_t2s_model(cfg.model.t2s_model, device) |
|
# 5. build s2a model |
|
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device) |
|
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device) |
|
|
|
# download checkpoint |
|
... |
|
|
|
# load semantic codec |
|
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt) |
|
# load acoustic codec |
|
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt) |
|
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt) |
|
# load t2s model |
|
safetensors.torch.load_model(t2s_model, t2s_model_ckpt) |
|
# load s2a model |
|
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt) |
|
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt) |
|
|
|
# inference |
|
prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav" |
|
save_path = "[YOUR SAVE PATH]" |
|
prompt_text = " We do not break. We never give in. We never back down." |
|
target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision." |
|
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration. |
|
target_len = 18 |
|
recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len) |
|
sf.write(save_path, recovered_audio, 24000) |
|
``` |