File size: 4,827 Bytes
630cca5 357e18b 630cca5 357e18b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
license: mit
datasets:
- amphion/Emilia-Dataset
language:
- en
- zh
- ko
- ja
- fr
- de
base_model:
- amphion/MaskGCT
pipeline_tag: text-to-speech
---
## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer
[![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct)
## Quickstart
**Clone and install**
```bash
git clone https://github.com/open-mmlab/Amphion.git
# create env
bash ./models/tts/maskgct/env.sh
```
**Model download**
We provide the following pretrained checkpoints:
| Model Name | Description |
|-------------------|-------------|
| [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. |
| [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. |
| [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. |
| [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. |
You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api.
```python
from huggingface_hub import hf_hub_download
# download semantic codec ckpt
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors")
# download acoustic codec ckpt
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors")
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors")
# download t2s model ckpt
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors")
# download s2a model ckpt
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors")
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors")
```
**Basic Usage**
You can use the following code to generate speech from text and a prompt speech.
```python
from models.tts.maskgct.maskgct_utils import *
from huggingface_hub import hf_hub_download
import safetensors
import soundfile as sf
if __name__ == "__main__":
# build model
device = torch.device("cuda:0")
cfg_path = "./models/tts/maskgct/config/maskgct.json"
cfg = load_config(cfg_path)
# 1. build semantic model (w2v-bert-2.0)
semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
# 2. build semantic codec
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
# 3. build acoustic codec
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device)
# 4. build t2s model
t2s_model = build_t2s_model(cfg.model.t2s_model, device)
# 5. build s2a model
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)
# download checkpoint
...
# load semantic codec
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
# load acoustic codec
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
# load t2s model
safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
# load s2a model
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)
# inference
prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav"
save_path = "[YOUR SAVE PATH]"
prompt_text = " We do not break. We never give in. We never back down."
target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision."
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration.
target_len = 18
recovered_audio = maskgct_inference(prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len)
sf.write(save_path, recovered_audio, 24000)
``` |