alpcansoydas's picture
Add new SentenceTransformer model
a487a2a verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25012
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: ÇİFT KLİMALI BARAN FREE COOLING UNIT MONTAJ KITI.
sentences:
- Building construction machinery and accessories
- Building construction machinery and accessories
- Mounting Hardware
- source_sentence: HUAWEI.TN1-L4G-100GHz-FEC /Line Wavelength Conversion Board with
4xGigabit Ethernet Line Capacity
sentences:
- Fixed network equipment and components
- Audio and visual equipment
- System boards processors interfaces or modules
- source_sentence: ASR 9922 System Fan Tray v3, Spare
sentences:
- Security and control equipment
- Computers
- System boards processors interfaces or modules
- source_sentence: Enhanced Cat.5E UTP Patch Cord 1.5M, White
sentences:
- Electrical cable and accessories
- Computer accessories
- Air circulation and parts and accessories
- source_sentence: Controller CXC
sentences:
- Personal communication devices
- Fixed network equipment and components
- Power generation control equipment
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on nomic-ai/modernbert-embed-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
---
# SentenceTransformer based on nomic-ai/modernbert-embed-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision 5960f1566fb7cb1adf1eb6e816639cf4646d9b12 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-02.12.25-total46clas-ifhavemorethan100sampleperclass-0.71acc")
# Run inference
sentences = [
'Controller CXC',
'Power generation control equipment',
'Personal communication devices',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 25,012 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.46 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 6.42 tokens</li><li>max: 11 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:--------------------------------------------------------------------------------------------------------------|:------------------------------------------------|
| <code>HPE MSA 14.4T SAS 10K SFF M2 6pk HDD Bdl</code> | <code>Media storage devices</code> |
| <code>Huawei Solar Greensites Solution (Yerli Panel_4*540Wp_Huawei Panel + PVPU+Konstrüksiyon+İşçilik)</code> | <code>Power generation control equipment</code> |
| <code>NetEngine9000 10G EVPN Port License(per 10G)</code> | <code>Network management software</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 3,127 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 18.0 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 6.4 tokens</li><li>max: 11 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------|:--------------------------------------------------------------------------|
| <code>CONNECTION CABLE</code> | <code>Electrical cable and accessories</code> |
| <code>MMU2 B 4-16 (24V, -48V)</code> | <code>Electronic component parts and raw materials and accessories</code> |
| <code>3ft C14 to C13 locking power cable 15A/250V - red</code> | <code>Electrical cable and accessories</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:---------------:|
| 0.1279 | 100 | 2.5126 | 2.1189 | nan |
| 0.2558 | 200 | 1.9979 | 1.9490 | nan |
| 0.3836 | 300 | 1.8803 | 1.9128 | nan |
| 0.5115 | 400 | 1.8242 | 1.8253 | nan |
| 0.6394 | 500 | 1.8024 | 1.7830 | nan |
| 0.7673 | 600 | 1.7425 | 1.7727 | nan |
| 0.8951 | 700 | 1.7302 | 1.7469 | nan |
| 1.0230 | 800 | 1.6722 | 1.7273 | nan |
| 1.1509 | 900 | 1.4698 | 1.7384 | nan |
| 1.2788 | 1000 | 1.5151 | 1.7111 | nan |
| 1.4066 | 1100 | 1.5151 | 1.7173 | nan |
| 1.5345 | 1200 | 1.494 | 1.6988 | nan |
| 1.6624 | 1300 | 1.4935 | 1.7058 | nan |
| 1.7903 | 1400 | 1.5143 | 1.6664 | nan |
| 1.9182 | 1500 | 1.5253 | 1.6636 | nan |
| 2.0460 | 1600 | 1.4355 | 1.6781 | nan |
| 2.1739 | 1700 | 1.3638 | 1.6944 | nan |
| 2.3018 | 1800 | 1.319 | 1.6829 | nan |
| 2.4297 | 1900 | 1.2848 | 1.7047 | nan |
| 2.5575 | 2000 | 1.3207 | 1.6950 | nan |
| 2.6854 | 2100 | 1.2769 | 1.6911 | nan |
| 2.8133 | 2200 | 1.2934 | 1.6958 | nan |
| 2.9412 | 2300 | 1.3244 | 1.6897 | nan |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->