alpcansoydas's picture
Add new SentenceTransformer model
a487a2a verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25012
  - loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
  - source_sentence: ÇİFT KLİMALI BARAN FREE COOLING UNIT MONTAJ KITI.
    sentences:
      - Building construction machinery and accessories
      - Building construction machinery and accessories
      - Mounting Hardware
  - source_sentence: >-
      HUAWEI.TN1-L4G-100GHz-FEC /Line Wavelength Conversion Board with 4xGigabit
      Ethernet Line Capacity
    sentences:
      - Fixed network equipment and components
      - Audio and visual equipment
      - System boards processors interfaces or modules
  - source_sentence: ASR 9922 System Fan Tray v3, Spare
    sentences:
      - Security and control equipment
      - Computers
      - System boards processors interfaces or modules
  - source_sentence: Enhanced Cat.5E UTP Patch Cord 1.5M, White
    sentences:
      - Electrical cable and accessories
      - Computer accessories
      - Air circulation and parts and accessories
  - source_sentence: Controller CXC
    sentences:
      - Personal communication devices
      - Fixed network equipment and components
      - Power generation control equipment
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on nomic-ai/modernbert-embed-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: .nan
            name: Pearson Cosine
          - type: spearman_cosine
            value: .nan
            name: Spearman Cosine

SentenceTransformer based on nomic-ai/modernbert-embed-base

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-02.12.25-total46clas-ifhavemorethan100sampleperclass-0.71acc")
# Run inference
sentences = [
    'Controller CXC',
    'Power generation control equipment',
    'Personal communication devices',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine nan
spearman_cosine nan

Training Details

Training Dataset

Unnamed Dataset

  • Size: 25,012 training samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 4 tokens
    • mean: 18.46 tokens
    • max: 85 tokens
    • min: 4 tokens
    • mean: 6.42 tokens
    • max: 11 tokens
  • Samples:
    sentence1 sentence2
    HPE MSA 14.4T SAS 10K SFF M2 6pk HDD Bdl Media storage devices
    Huawei Solar Greensites Solution (Yerli Panel_4*540Wp_Huawei Panel + PVPU+Konstrüksiyon+İşçilik) Power generation control equipment
    NetEngine9000 10G EVPN Port License(per 10G) Network management software
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 3,127 evaluation samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 3 tokens
    • mean: 18.0 tokens
    • max: 77 tokens
    • min: 4 tokens
    • mean: 6.4 tokens
    • max: 11 tokens
  • Samples:
    sentence1 sentence2
    CONNECTION CABLE Electrical cable and accessories
    MMU2 B 4-16 (24V, -48V) Electronic component parts and raw materials and accessories
    3ft C14 to C13 locking power cable 15A/250V - red Electrical cable and accessories
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss spearman_cosine
0.1279 100 2.5126 2.1189 nan
0.2558 200 1.9979 1.9490 nan
0.3836 300 1.8803 1.9128 nan
0.5115 400 1.8242 1.8253 nan
0.6394 500 1.8024 1.7830 nan
0.7673 600 1.7425 1.7727 nan
0.8951 700 1.7302 1.7469 nan
1.0230 800 1.6722 1.7273 nan
1.1509 900 1.4698 1.7384 nan
1.2788 1000 1.5151 1.7111 nan
1.4066 1100 1.5151 1.7173 nan
1.5345 1200 1.494 1.6988 nan
1.6624 1300 1.4935 1.7058 nan
1.7903 1400 1.5143 1.6664 nan
1.9182 1500 1.5253 1.6636 nan
2.0460 1600 1.4355 1.6781 nan
2.1739 1700 1.3638 1.6944 nan
2.3018 1800 1.319 1.6829 nan
2.4297 1900 1.2848 1.7047 nan
2.5575 2000 1.3207 1.6950 nan
2.6854 2100 1.2769 1.6911 nan
2.8133 2200 1.2934 1.6958 nan
2.9412 2300 1.3244 1.6897 nan

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}