|
--- |
|
library_name: transformers |
|
tags: |
|
- code |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
This model is trained on generating SQL code from user prompts. |
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
This model is traiend for generating SQL code from user prompts. The prompt structure is based on this format. |
|
###Question ###Context[SQL code of your table ] ###Answer: |
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
- **Developed by:** Ali Bidaran |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** Gemma 2B |
|
|
|
### Model Sources [optional] |
|
|
|
|
|
|
|
|
|
### Direct Use |
|
|
|
```python |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer |
|
|
|
model_id = "Gemma2_SQLGEN" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0}) |
|
tokenizer.padding_side = 'right' |
|
) |
|
from peft import LoraConfig, PeftModel, get_peft_model |
|
from trl import SFTTrainer |
|
|
|
prompt = "find unique items from name coloum." |
|
text=f"<s>##Question: {prompt} \n ##Context: CREATE TABLE head (head_id VARCHAR, name VARCHAR) \n ##Answer:" |
|
inputs=tokenizer(text,return_tensors='pt').to('cuda') |
|
outputs=model.generate(**inputs,max_new_tokens=400,do_sample=True,top_p=0.92,top_k=10,temperature=0.7) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
|