Model Card for Model ID
This model is trained on generating SQL code from user prompts.
Model Details
Model Description
This model is traiend for generating SQL code from user prompts. The prompt structure is based on this format. ###Question ###Context[SQL code of your table ] ###Answer: This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Ali Bidaran
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: Gemma 2B
Model Sources [optional]
Direct Use
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer
model_id = "Gemma2_SQLGEN"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
tokenizer.padding_side = 'right'
)
from peft import LoraConfig, PeftModel, get_peft_model
from trl import SFTTrainer
prompt = "find unique items from name coloum."
text=f"<s>##Question: {prompt} \n ##Context: CREATE TABLE head (head_id VARCHAR, name VARCHAR) \n ##Answer:"
inputs=tokenizer(text,return_tensors='pt').to('cuda')
outputs=model.generate(**inputs,max_new_tokens=400,do_sample=True,top_p=0.92,top_k=10,temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.