metadata
library_name: transformers
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results: []
my_awesome_wnut_model
This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0033
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9990
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0136 | 1.0 | 1559 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.9983 |
0.0087 | 2.0 | 3118 | 0.0056 | 0.0 | 0.0 | 0.0 | 0.9986 |
0.0061 | 3.0 | 4677 | 0.0046 | 0.0 | 0.0 | 0.0 | 0.9987 |
0.0061 | 4.0 | 6236 | 0.0040 | 0.0 | 0.0 | 0.0 | 0.9988 |
0.005 | 5.0 | 7795 | 0.0038 | 0.0 | 0.0 | 0.0 | 0.9988 |
0.0049 | 6.0 | 9354 | 0.0035 | 0.0 | 0.0 | 0.0 | 0.9989 |
0.0044 | 7.0 | 10913 | 0.0034 | 0.0 | 0.0 | 0.0 | 0.9989 |
0.004 | 8.0 | 12472 | 0.0036 | 0.0 | 0.0 | 0.0 | 0.9988 |
0.004 | 9.0 | 14031 | 0.0034 | 0.0 | 0.0 | 0.0 | 0.9990 |
0.0044 | 10.0 | 15590 | 0.0033 | 0.0 | 0.0 | 0.0 | 0.9990 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3