--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: [] --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0832 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 118 | 0.0767 | 0.0 | 0.0 | 0.0 | 0.9725 | | No log | 2.0 | 236 | 0.0554 | 0.0 | 0.0 | 0.0 | 0.9799 | | No log | 3.0 | 354 | 0.0695 | 0.0 | 0.0 | 0.0 | 0.9799 | | No log | 4.0 | 472 | 0.0762 | 0.0 | 0.0 | 0.0 | 0.9795 | | 0.0497 | 5.0 | 590 | 0.0888 | 0.0 | 0.0 | 0.0 | 0.9804 | | 0.0497 | 6.0 | 708 | 0.0820 | 0.0 | 0.0 | 0.0 | 0.9812 | | 0.0497 | 7.0 | 826 | 0.0877 | 0.0 | 0.0 | 0.0 | 0.9814 | | 0.0497 | 8.0 | 944 | 0.0864 | 0.0 | 0.0 | 0.0 | 0.9815 | | 0.003 | 9.0 | 1062 | 0.0876 | 0.0 | 0.0 | 0.0 | 0.9823 | | 0.003 | 10.0 | 1180 | 0.0832 | 0.0 | 0.0 | 0.0 | 0.9821 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1 - Datasets 2.19.0 - Tokenizers 0.19.1