|
|
|
|
|
import math
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import Callable, Dict, List, Optional, Union
|
|
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
from PIL import __version__ as pil_version
|
|
|
|
from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, TryExcept, ops, plt_settings, threaded
|
|
from ultralytics.utils.checks import check_font, check_version, is_ascii
|
|
from ultralytics.utils.files import increment_path
|
|
|
|
|
|
class Colors:
|
|
"""
|
|
Ultralytics color palette https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Colors.
|
|
|
|
This class provides methods to work with the Ultralytics color palette, including converting hex color codes to
|
|
RGB values.
|
|
|
|
Attributes:
|
|
palette (list of tuple): List of RGB color values.
|
|
n (int): The number of colors in the palette.
|
|
pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.
|
|
|
|
## Ultralytics Color Palette
|
|
|
|
| Index | Color | HEX | RGB |
|
|
|-------|-------------------------------------------------------------------|-----------|-------------------|
|
|
| 0 | <i class="fa-solid fa-square fa-2xl" style="color: #042aff;"></i> | `#042aff` | (4, 42, 255) |
|
|
| 1 | <i class="fa-solid fa-square fa-2xl" style="color: #0bdbeb;"></i> | `#0bdbeb` | (11, 219, 235) |
|
|
| 2 | <i class="fa-solid fa-square fa-2xl" style="color: #f3f3f3;"></i> | `#f3f3f3` | (243, 243, 243) |
|
|
| 3 | <i class="fa-solid fa-square fa-2xl" style="color: #00dfb7;"></i> | `#00dfb7` | (0, 223, 183) |
|
|
| 4 | <i class="fa-solid fa-square fa-2xl" style="color: #111f68;"></i> | `#111f68` | (17, 31, 104) |
|
|
| 5 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6fdd;"></i> | `#ff6fdd` | (255, 111, 221) |
|
|
| 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff444f;"></i> | `#ff444f` | (255, 68, 79) |
|
|
| 7 | <i class="fa-solid fa-square fa-2xl" style="color: #cced00;"></i> | `#cced00` | (204, 237, 0) |
|
|
| 8 | <i class="fa-solid fa-square fa-2xl" style="color: #00f344;"></i> | `#00f344` | (0, 243, 68) |
|
|
| 9 | <i class="fa-solid fa-square fa-2xl" style="color: #bd00ff;"></i> | `#bd00ff` | (189, 0, 255) |
|
|
| 10 | <i class="fa-solid fa-square fa-2xl" style="color: #00b4ff;"></i> | `#00b4ff` | (0, 180, 255) |
|
|
| 11 | <i class="fa-solid fa-square fa-2xl" style="color: #dd00ba;"></i> | `#dd00ba` | (221, 0, 186) |
|
|
| 12 | <i class="fa-solid fa-square fa-2xl" style="color: #00ffff;"></i> | `#00ffff` | (0, 255, 255) |
|
|
| 13 | <i class="fa-solid fa-square fa-2xl" style="color: #26c000;"></i> | `#26c000` | (38, 192, 0) |
|
|
| 14 | <i class="fa-solid fa-square fa-2xl" style="color: #01ffb3;"></i> | `#01ffb3` | (1, 255, 179) |
|
|
| 15 | <i class="fa-solid fa-square fa-2xl" style="color: #7d24ff;"></i> | `#7d24ff` | (125, 36, 255) |
|
|
| 16 | <i class="fa-solid fa-square fa-2xl" style="color: #7b0068;"></i> | `#7b0068` | (123, 0, 104) |
|
|
| 17 | <i class="fa-solid fa-square fa-2xl" style="color: #ff1b6c;"></i> | `#ff1b6c` | (255, 27, 108) |
|
|
| 18 | <i class="fa-solid fa-square fa-2xl" style="color: #fc6d2f;"></i> | `#fc6d2f` | (252, 109, 47) |
|
|
| 19 | <i class="fa-solid fa-square fa-2xl" style="color: #a2ff0b;"></i> | `#a2ff0b` | (162, 255, 11) |
|
|
|
|
## Pose Color Palette
|
|
|
|
| Index | Color | HEX | RGB |
|
|
|-------|-------------------------------------------------------------------|-----------|-------------------|
|
|
| 0 | <i class="fa-solid fa-square fa-2xl" style="color: #ff8000;"></i> | `#ff8000` | (255, 128, 0) |
|
|
| 1 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9933;"></i> | `#ff9933` | (255, 153, 51) |
|
|
| 2 | <i class="fa-solid fa-square fa-2xl" style="color: #ffb266;"></i> | `#ffb266` | (255, 178, 102) |
|
|
| 3 | <i class="fa-solid fa-square fa-2xl" style="color: #e6e600;"></i> | `#e6e600` | (230, 230, 0) |
|
|
| 4 | <i class="fa-solid fa-square fa-2xl" style="color: #ff99ff;"></i> | `#ff99ff` | (255, 153, 255) |
|
|
| 5 | <i class="fa-solid fa-square fa-2xl" style="color: #99ccff;"></i> | `#99ccff` | (153, 204, 255) |
|
|
| 6 | <i class="fa-solid fa-square fa-2xl" style="color: #ff66ff;"></i> | `#ff66ff` | (255, 102, 255) |
|
|
| 7 | <i class="fa-solid fa-square fa-2xl" style="color: #ff33ff;"></i> | `#ff33ff` | (255, 51, 255) |
|
|
| 8 | <i class="fa-solid fa-square fa-2xl" style="color: #66b2ff;"></i> | `#66b2ff` | (102, 178, 255) |
|
|
| 9 | <i class="fa-solid fa-square fa-2xl" style="color: #3399ff;"></i> | `#3399ff` | (51, 153, 255) |
|
|
| 10 | <i class="fa-solid fa-square fa-2xl" style="color: #ff9999;"></i> | `#ff9999` | (255, 153, 153) |
|
|
| 11 | <i class="fa-solid fa-square fa-2xl" style="color: #ff6666;"></i> | `#ff6666` | (255, 102, 102) |
|
|
| 12 | <i class="fa-solid fa-square fa-2xl" style="color: #ff3333;"></i> | `#ff3333` | (255, 51, 51) |
|
|
| 13 | <i class="fa-solid fa-square fa-2xl" style="color: #99ff99;"></i> | `#99ff99` | (153, 255, 153) |
|
|
| 14 | <i class="fa-solid fa-square fa-2xl" style="color: #66ff66;"></i> | `#66ff66` | (102, 255, 102) |
|
|
| 15 | <i class="fa-solid fa-square fa-2xl" style="color: #33ff33;"></i> | `#33ff33` | (51, 255, 51) |
|
|
| 16 | <i class="fa-solid fa-square fa-2xl" style="color: #00ff00;"></i> | `#00ff00` | (0, 255, 0) |
|
|
| 17 | <i class="fa-solid fa-square fa-2xl" style="color: #0000ff;"></i> | `#0000ff` | (0, 0, 255) |
|
|
| 18 | <i class="fa-solid fa-square fa-2xl" style="color: #ff0000;"></i> | `#ff0000` | (255, 0, 0) |
|
|
| 19 | <i class="fa-solid fa-square fa-2xl" style="color: #ffffff;"></i> | `#ffffff` | (255, 255, 255) |
|
|
|
|
!!! note "Ultralytics Brand Colors"
|
|
|
|
For Ultralytics brand colors see [https://www.ultralytics.com/brand](https://www.ultralytics.com/brand). Please use the official Ultralytics colors for all marketing materials.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
|
|
hexs = (
|
|
"042AFF",
|
|
"0BDBEB",
|
|
"F3F3F3",
|
|
"00DFB7",
|
|
"111F68",
|
|
"FF6FDD",
|
|
"FF444F",
|
|
"CCED00",
|
|
"00F344",
|
|
"BD00FF",
|
|
"00B4FF",
|
|
"DD00BA",
|
|
"00FFFF",
|
|
"26C000",
|
|
"01FFB3",
|
|
"7D24FF",
|
|
"7B0068",
|
|
"FF1B6C",
|
|
"FC6D2F",
|
|
"A2FF0B",
|
|
)
|
|
self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
|
|
self.n = len(self.palette)
|
|
self.pose_palette = np.array(
|
|
[
|
|
[255, 128, 0],
|
|
[255, 153, 51],
|
|
[255, 178, 102],
|
|
[230, 230, 0],
|
|
[255, 153, 255],
|
|
[153, 204, 255],
|
|
[255, 102, 255],
|
|
[255, 51, 255],
|
|
[102, 178, 255],
|
|
[51, 153, 255],
|
|
[255, 153, 153],
|
|
[255, 102, 102],
|
|
[255, 51, 51],
|
|
[153, 255, 153],
|
|
[102, 255, 102],
|
|
[51, 255, 51],
|
|
[0, 255, 0],
|
|
[0, 0, 255],
|
|
[255, 0, 0],
|
|
[255, 255, 255],
|
|
],
|
|
dtype=np.uint8,
|
|
)
|
|
|
|
def __call__(self, i, bgr=False):
|
|
"""Converts hex color codes to RGB values."""
|
|
c = self.palette[int(i) % self.n]
|
|
return (c[2], c[1], c[0]) if bgr else c
|
|
|
|
@staticmethod
|
|
def hex2rgb(h):
|
|
"""Converts hex color codes to RGB values (i.e. default PIL order)."""
|
|
return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))
|
|
|
|
|
|
colors = Colors()
|
|
|
|
|
|
class Annotator:
|
|
"""
|
|
Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.
|
|
|
|
Attributes:
|
|
im (Image.Image or numpy array): The image to annotate.
|
|
pil (bool): Whether to use PIL or cv2 for drawing annotations.
|
|
font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.
|
|
lw (float): Line width for drawing.
|
|
skeleton (List[List[int]]): Skeleton structure for keypoints.
|
|
limb_color (List[int]): Color palette for limbs.
|
|
kpt_color (List[int]): Color palette for keypoints.
|
|
"""
|
|
|
|
def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
|
|
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
|
|
non_ascii = not is_ascii(example)
|
|
input_is_pil = isinstance(im, Image.Image)
|
|
self.pil = pil or non_ascii or input_is_pil
|
|
self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
|
|
if self.pil:
|
|
self.im = im if input_is_pil else Image.fromarray(im)
|
|
self.draw = ImageDraw.Draw(self.im)
|
|
try:
|
|
font = check_font("Arial.Unicode.ttf" if non_ascii else font)
|
|
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
|
|
self.font = ImageFont.truetype(str(font), size)
|
|
except Exception:
|
|
self.font = ImageFont.load_default()
|
|
|
|
if check_version(pil_version, "9.2.0"):
|
|
self.font.getsize = lambda x: self.font.getbbox(x)[2:4]
|
|
else:
|
|
assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
|
|
self.im = im if im.flags.writeable else im.copy()
|
|
self.tf = max(self.lw - 1, 1)
|
|
self.sf = self.lw / 3
|
|
|
|
self.skeleton = [
|
|
[16, 14],
|
|
[14, 12],
|
|
[17, 15],
|
|
[15, 13],
|
|
[12, 13],
|
|
[6, 12],
|
|
[7, 13],
|
|
[6, 7],
|
|
[6, 8],
|
|
[7, 9],
|
|
[8, 10],
|
|
[9, 11],
|
|
[2, 3],
|
|
[1, 2],
|
|
[1, 3],
|
|
[2, 4],
|
|
[3, 5],
|
|
[4, 6],
|
|
[5, 7],
|
|
]
|
|
|
|
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
|
|
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
|
|
self.dark_colors = {
|
|
(235, 219, 11),
|
|
(243, 243, 243),
|
|
(183, 223, 0),
|
|
(221, 111, 255),
|
|
(0, 237, 204),
|
|
(68, 243, 0),
|
|
(255, 255, 0),
|
|
(179, 255, 1),
|
|
(11, 255, 162),
|
|
}
|
|
self.light_colors = {
|
|
(255, 42, 4),
|
|
(79, 68, 255),
|
|
(255, 0, 189),
|
|
(255, 180, 0),
|
|
(186, 0, 221),
|
|
(0, 192, 38),
|
|
(255, 36, 125),
|
|
(104, 0, 123),
|
|
(108, 27, 255),
|
|
(47, 109, 252),
|
|
(104, 31, 17),
|
|
}
|
|
|
|
def get_txt_color(self, color=(128, 128, 128), txt_color=(255, 255, 255)):
|
|
"""Assign text color based on background color."""
|
|
if color in self.dark_colors:
|
|
return 104, 31, 17
|
|
elif color in self.light_colors:
|
|
return 255, 255, 255
|
|
else:
|
|
return txt_color
|
|
|
|
def circle_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=2):
|
|
"""
|
|
Draws a label with a background circle centered within a given bounding box.
|
|
|
|
Args:
|
|
box (tuple): The bounding box coordinates (x1, y1, x2, y2).
|
|
label (str): The text label to be displayed.
|
|
color (tuple, optional): The background color of the rectangle (B, G, R).
|
|
txt_color (tuple, optional): The color of the text (R, G, B).
|
|
margin (int, optional): The margin between the text and the rectangle border.
|
|
"""
|
|
|
|
if len(label) > 3:
|
|
print(
|
|
f"Length of label is {len(label)}, initial 3 label characters will be considered for circle annotation!"
|
|
)
|
|
label = label[:3]
|
|
|
|
|
|
x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
|
|
|
|
text_size = cv2.getTextSize(str(label), cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.15, self.tf)[0]
|
|
|
|
required_radius = int(((text_size[0] ** 2 + text_size[1] ** 2) ** 0.5) / 2) + margin
|
|
|
|
cv2.circle(self.im, (x_center, y_center), required_radius, color, -1)
|
|
|
|
text_x = x_center - text_size[0] // 2
|
|
text_y = y_center + text_size[1] // 2
|
|
|
|
cv2.putText(
|
|
self.im,
|
|
str(label),
|
|
(text_x, text_y),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
self.sf - 0.15,
|
|
self.get_txt_color(color, txt_color),
|
|
self.tf,
|
|
lineType=cv2.LINE_AA,
|
|
)
|
|
|
|
def text_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=5):
|
|
"""
|
|
Draws a label with a background rectangle centered within a given bounding box.
|
|
|
|
Args:
|
|
box (tuple): The bounding box coordinates (x1, y1, x2, y2).
|
|
label (str): The text label to be displayed.
|
|
color (tuple, optional): The background color of the rectangle (B, G, R).
|
|
txt_color (tuple, optional): The color of the text (R, G, B).
|
|
margin (int, optional): The margin between the text and the rectangle border.
|
|
"""
|
|
|
|
x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
|
|
|
|
text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.1, self.tf)[0]
|
|
|
|
text_x = x_center - text_size[0] // 2
|
|
text_y = y_center + text_size[1] // 2
|
|
|
|
rect_x1 = text_x - margin
|
|
rect_y1 = text_y - text_size[1] - margin
|
|
rect_x2 = text_x + text_size[0] + margin
|
|
rect_y2 = text_y + margin
|
|
|
|
cv2.rectangle(self.im, (rect_x1, rect_y1), (rect_x2, rect_y2), color, -1)
|
|
|
|
cv2.putText(
|
|
self.im,
|
|
label,
|
|
(text_x, text_y),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
self.sf - 0.1,
|
|
self.get_txt_color(color, txt_color),
|
|
self.tf,
|
|
lineType=cv2.LINE_AA,
|
|
)
|
|
|
|
def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
|
|
"""
|
|
Draws a bounding box to image with label.
|
|
|
|
Args:
|
|
box (tuple): The bounding box coordinates (x1, y1, x2, y2).
|
|
label (str): The text label to be displayed.
|
|
color (tuple, optional): The background color of the rectangle (B, G, R).
|
|
txt_color (tuple, optional): The color of the text (R, G, B).
|
|
rotated (bool, optional): Variable used to check if task is OBB
|
|
"""
|
|
txt_color = self.get_txt_color(color, txt_color)
|
|
if isinstance(box, torch.Tensor):
|
|
box = box.tolist()
|
|
if self.pil or not is_ascii(label):
|
|
if rotated:
|
|
p1 = box[0]
|
|
self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)
|
|
else:
|
|
p1 = (box[0], box[1])
|
|
self.draw.rectangle(box, width=self.lw, outline=color)
|
|
if label:
|
|
w, h = self.font.getsize(label)
|
|
outside = p1[1] >= h
|
|
if p1[0] > self.im.size[0] - w:
|
|
p1 = self.im.size[0] - w, p1[1]
|
|
self.draw.rectangle(
|
|
(p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
|
|
fill=color,
|
|
)
|
|
|
|
self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
|
|
else:
|
|
if rotated:
|
|
p1 = [int(b) for b in box[0]]
|
|
cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)
|
|
else:
|
|
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
|
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
|
if label:
|
|
w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
|
|
h += 3
|
|
outside = p1[1] >= h
|
|
if p1[0] > self.im.shape[1] - w:
|
|
p1 = self.im.shape[1] - w, p1[1]
|
|
p2 = p1[0] + w, p1[1] - h if outside else p1[1] + h
|
|
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)
|
|
cv2.putText(
|
|
self.im,
|
|
label,
|
|
(p1[0], p1[1] - 2 if outside else p1[1] + h - 1),
|
|
0,
|
|
self.sf,
|
|
txt_color,
|
|
thickness=self.tf,
|
|
lineType=cv2.LINE_AA,
|
|
)
|
|
|
|
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
|
|
"""
|
|
Plot masks on image.
|
|
|
|
Args:
|
|
masks (tensor): Predicted masks on cuda, shape: [n, h, w]
|
|
colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]
|
|
im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]
|
|
alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque
|
|
retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.
|
|
"""
|
|
if self.pil:
|
|
|
|
self.im = np.asarray(self.im).copy()
|
|
if len(masks) == 0:
|
|
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
|
|
if im_gpu.device != masks.device:
|
|
im_gpu = im_gpu.to(masks.device)
|
|
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0
|
|
colors = colors[:, None, None]
|
|
masks = masks.unsqueeze(3)
|
|
masks_color = masks * (colors * alpha)
|
|
|
|
inv_alpha_masks = (1 - masks * alpha).cumprod(0)
|
|
mcs = masks_color.max(dim=0).values
|
|
|
|
im_gpu = im_gpu.flip(dims=[0])
|
|
im_gpu = im_gpu.permute(1, 2, 0).contiguous()
|
|
im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
|
|
im_mask = im_gpu * 255
|
|
im_mask_np = im_mask.byte().cpu().numpy()
|
|
self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
|
|
if self.pil:
|
|
|
|
self.fromarray(self.im)
|
|
|
|
def kpts(self, kpts, shape=(640, 640), radius=None, kpt_line=True, conf_thres=0.25, kpt_color=None):
|
|
"""
|
|
Plot keypoints on the image.
|
|
|
|
Args:
|
|
kpts (torch.Tensor): Keypoints, shape [17, 3] (x, y, confidence).
|
|
shape (tuple, optional): Image shape (h, w). Defaults to (640, 640).
|
|
radius (int, optional): Keypoint radius. Defaults to 5.
|
|
kpt_line (bool, optional): Draw lines between keypoints. Defaults to True.
|
|
conf_thres (float, optional): Confidence threshold. Defaults to 0.25.
|
|
kpt_color (tuple, optional): Keypoint color (B, G, R). Defaults to None.
|
|
|
|
Note:
|
|
- `kpt_line=True` currently only supports human pose plotting.
|
|
- Modifies self.im in-place.
|
|
- If self.pil is True, converts image to numpy array and back to PIL.
|
|
"""
|
|
radius = radius if radius is not None else self.lw
|
|
if self.pil:
|
|
|
|
self.im = np.asarray(self.im).copy()
|
|
nkpt, ndim = kpts.shape
|
|
is_pose = nkpt == 17 and ndim in {2, 3}
|
|
kpt_line &= is_pose
|
|
for i, k in enumerate(kpts):
|
|
color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i))
|
|
x_coord, y_coord = k[0], k[1]
|
|
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
|
|
if len(k) == 3:
|
|
conf = k[2]
|
|
if conf < conf_thres:
|
|
continue
|
|
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)
|
|
|
|
if kpt_line:
|
|
ndim = kpts.shape[-1]
|
|
for i, sk in enumerate(self.skeleton):
|
|
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
|
|
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
|
|
if ndim == 3:
|
|
conf1 = kpts[(sk[0] - 1), 2]
|
|
conf2 = kpts[(sk[1] - 1), 2]
|
|
if conf1 < conf_thres or conf2 < conf_thres:
|
|
continue
|
|
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
|
|
continue
|
|
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
|
|
continue
|
|
cv2.line(
|
|
self.im,
|
|
pos1,
|
|
pos2,
|
|
kpt_color or self.limb_color[i].tolist(),
|
|
thickness=int(np.ceil(self.lw / 2)),
|
|
lineType=cv2.LINE_AA,
|
|
)
|
|
if self.pil:
|
|
|
|
self.fromarray(self.im)
|
|
|
|
def rectangle(self, xy, fill=None, outline=None, width=1):
|
|
"""Add rectangle to image (PIL-only)."""
|
|
self.draw.rectangle(xy, fill, outline, width)
|
|
|
|
def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
|
|
"""Adds text to an image using PIL or cv2."""
|
|
if anchor == "bottom":
|
|
w, h = self.font.getsize(text)
|
|
xy[1] += 1 - h
|
|
if self.pil:
|
|
if box_style:
|
|
w, h = self.font.getsize(text)
|
|
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
|
|
|
|
txt_color = (255, 255, 255)
|
|
if "\n" in text:
|
|
lines = text.split("\n")
|
|
_, h = self.font.getsize(text)
|
|
for line in lines:
|
|
self.draw.text(xy, line, fill=txt_color, font=self.font)
|
|
xy[1] += h
|
|
else:
|
|
self.draw.text(xy, text, fill=txt_color, font=self.font)
|
|
else:
|
|
if box_style:
|
|
w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
|
|
h += 3
|
|
outside = xy[1] >= h
|
|
p2 = xy[0] + w, xy[1] - h if outside else xy[1] + h
|
|
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)
|
|
|
|
txt_color = (255, 255, 255)
|
|
cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)
|
|
|
|
def fromarray(self, im):
|
|
"""Update self.im from a numpy array."""
|
|
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
|
self.draw = ImageDraw.Draw(self.im)
|
|
|
|
def result(self):
|
|
"""Return annotated image as array."""
|
|
return np.asarray(self.im)
|
|
|
|
def show(self, title=None):
|
|
"""Show the annotated image."""
|
|
im = Image.fromarray(np.asarray(self.im)[..., ::-1])
|
|
if IS_COLAB or IS_KAGGLE:
|
|
try:
|
|
display(im)
|
|
except ImportError as e:
|
|
LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}")
|
|
else:
|
|
im.show(title=title)
|
|
|
|
def save(self, filename="image.jpg"):
|
|
"""Save the annotated image to 'filename'."""
|
|
cv2.imwrite(filename, np.asarray(self.im))
|
|
|
|
def get_bbox_dimension(self, bbox=None):
|
|
"""
|
|
Calculate the area of a bounding box.
|
|
|
|
Args:
|
|
bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).
|
|
|
|
Returns:
|
|
angle (degree): Degree value of angle between three points
|
|
"""
|
|
x_min, y_min, x_max, y_max = bbox
|
|
width = x_max - x_min
|
|
height = y_max - y_min
|
|
return width, height, width * height
|
|
|
|
def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
|
|
"""
|
|
Draw region line.
|
|
|
|
Args:
|
|
reg_pts (list): Region Points (for line 2 points, for region 4 points)
|
|
color (tuple): Region Color value
|
|
thickness (int): Region area thickness value
|
|
"""
|
|
cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)
|
|
|
|
|
|
for point in reg_pts:
|
|
cv2.circle(self.im, (point[0], point[1]), thickness * 2, color, -1)
|
|
|
|
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
|
|
"""
|
|
Draw centroid point and track trails.
|
|
|
|
Args:
|
|
track (list): object tracking points for trails display
|
|
color (tuple): tracks line color
|
|
track_thickness (int): track line thickness value
|
|
"""
|
|
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
|
|
cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
|
|
cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)
|
|
|
|
def queue_counts_display(self, label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0)):
|
|
"""
|
|
Displays queue counts on an image centered at the points with customizable font size and colors.
|
|
|
|
Args:
|
|
label (str): queue counts label
|
|
points (tuple): region points for center point calculation to display text
|
|
region_color (tuple): RGB queue region color.
|
|
txt_color (tuple): RGB text display color.
|
|
"""
|
|
x_values = [point[0] for point in points]
|
|
y_values = [point[1] for point in points]
|
|
center_x = sum(x_values) // len(points)
|
|
center_y = sum(y_values) // len(points)
|
|
|
|
text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
|
|
text_width = text_size[0]
|
|
text_height = text_size[1]
|
|
|
|
rect_width = text_width + 20
|
|
rect_height = text_height + 20
|
|
rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2)
|
|
rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2)
|
|
cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1)
|
|
|
|
text_x = center_x - text_width // 2
|
|
text_y = center_y + text_height // 2
|
|
|
|
|
|
cv2.putText(
|
|
self.im,
|
|
label,
|
|
(text_x, text_y),
|
|
0,
|
|
fontScale=self.sf,
|
|
color=txt_color,
|
|
thickness=self.tf,
|
|
lineType=cv2.LINE_AA,
|
|
)
|
|
|
|
def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin):
|
|
"""
|
|
Display the bounding boxes labels in parking management app.
|
|
|
|
Args:
|
|
im0 (ndarray): inference image
|
|
text (str): object/class name
|
|
txt_color (tuple): display color for text foreground
|
|
bg_color (tuple): display color for text background
|
|
x_center (float): x position center point for bounding box
|
|
y_center (float): y position center point for bounding box
|
|
margin (int): gap between text and rectangle for better display
|
|
"""
|
|
text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
|
|
text_x = x_center - text_size[0] // 2
|
|
text_y = y_center + text_size[1] // 2
|
|
|
|
rect_x1 = text_x - margin
|
|
rect_y1 = text_y - text_size[1] - margin
|
|
rect_x2 = text_x + text_size[0] + margin
|
|
rect_y2 = text_y + margin
|
|
cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
|
|
cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
|
|
|
|
def display_analytics(self, im0, text, txt_color, bg_color, margin):
|
|
"""
|
|
Display the overall statistics for parking lots.
|
|
|
|
Args:
|
|
im0 (ndarray): inference image
|
|
text (dict): labels dictionary
|
|
txt_color (tuple): display color for text foreground
|
|
bg_color (tuple): display color for text background
|
|
margin (int): gap between text and rectangle for better display
|
|
"""
|
|
horizontal_gap = int(im0.shape[1] * 0.02)
|
|
vertical_gap = int(im0.shape[0] * 0.01)
|
|
text_y_offset = 0
|
|
for label, value in text.items():
|
|
txt = f"{label}: {value}"
|
|
text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0]
|
|
if text_size[0] < 5 or text_size[1] < 5:
|
|
text_size = (5, 5)
|
|
text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
|
|
text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
|
|
rect_x1 = text_x - margin * 2
|
|
rect_y1 = text_y - text_size[1] - margin * 2
|
|
rect_x2 = text_x + text_size[0] + margin * 2
|
|
rect_y2 = text_y + margin * 2
|
|
cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
|
|
cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
|
|
text_y_offset = rect_y2
|
|
|
|
@staticmethod
|
|
def estimate_pose_angle(a, b, c):
|
|
"""
|
|
Calculate the pose angle for object.
|
|
|
|
Args:
|
|
a (float) : The value of pose point a
|
|
b (float): The value of pose point b
|
|
c (float): The value o pose point c
|
|
|
|
Returns:
|
|
angle (degree): Degree value of angle between three points
|
|
"""
|
|
a, b, c = np.array(a), np.array(b), np.array(c)
|
|
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
|
|
angle = np.abs(radians * 180.0 / np.pi)
|
|
if angle > 180.0:
|
|
angle = 360 - angle
|
|
return angle
|
|
|
|
def draw_specific_points(self, keypoints, indices=None, radius=2, conf_thres=0.25):
|
|
"""
|
|
Draw specific keypoints for gym steps counting.
|
|
|
|
Args:
|
|
keypoints (list): Keypoints data to be plotted.
|
|
indices (list, optional): Keypoint indices to be plotted. Defaults to [2, 5, 7].
|
|
radius (int, optional): Keypoint radius. Defaults to 2.
|
|
conf_thres (float, optional): Confidence threshold for keypoints. Defaults to 0.25.
|
|
|
|
Returns:
|
|
(numpy.ndarray): Image with drawn keypoints.
|
|
|
|
Note:
|
|
Keypoint format: [x, y] or [x, y, confidence].
|
|
Modifies self.im in-place.
|
|
"""
|
|
indices = indices or [2, 5, 7]
|
|
points = [(int(k[0]), int(k[1])) for i, k in enumerate(keypoints) if i in indices and k[2] >= conf_thres]
|
|
|
|
|
|
for start, end in zip(points[:-1], points[1:]):
|
|
cv2.line(self.im, start, end, (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
|
|
|
|
|
for pt in points:
|
|
cv2.circle(self.im, pt, radius, (0, 0, 255), -1, lineType=cv2.LINE_AA)
|
|
|
|
return self.im
|
|
|
|
def plot_workout_information(self, display_text, position, color=(104, 31, 17), txt_color=(255, 255, 255)):
|
|
"""
|
|
Draw text with a background on the image.
|
|
|
|
Args:
|
|
display_text (str): The text to be displayed.
|
|
position (tuple): Coordinates (x, y) on the image where the text will be placed.
|
|
color (tuple, optional): Text background color
|
|
txt_color (tuple, optional): Text foreground color
|
|
"""
|
|
(text_width, text_height), _ = cv2.getTextSize(display_text, 0, self.sf, self.tf)
|
|
|
|
|
|
cv2.rectangle(
|
|
self.im,
|
|
(position[0], position[1] - text_height - 5),
|
|
(position[0] + text_width + 10, position[1] - text_height - 5 + text_height + 10 + self.tf),
|
|
color,
|
|
-1,
|
|
)
|
|
|
|
cv2.putText(self.im, display_text, position, 0, self.sf, txt_color, self.tf)
|
|
|
|
return text_height
|
|
|
|
def plot_angle_and_count_and_stage(
|
|
self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)
|
|
):
|
|
"""
|
|
Plot the pose angle, count value, and step stage.
|
|
|
|
Args:
|
|
angle_text (str): Angle value for workout monitoring
|
|
count_text (str): Counts value for workout monitoring
|
|
stage_text (str): Stage decision for workout monitoring
|
|
center_kpt (list): Centroid pose index for workout monitoring
|
|
color (tuple, optional): Text background color
|
|
txt_color (tuple, optional): Text foreground color
|
|
"""
|
|
|
|
angle_text, count_text, stage_text = f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}"
|
|
|
|
|
|
angle_height = self.plot_workout_information(
|
|
angle_text, (int(center_kpt[0]), int(center_kpt[1])), color, txt_color
|
|
)
|
|
count_height = self.plot_workout_information(
|
|
count_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + 20), color, txt_color
|
|
)
|
|
self.plot_workout_information(
|
|
stage_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + count_height + 40), color, txt_color
|
|
)
|
|
|
|
def seg_bbox(self, mask, mask_color=(255, 0, 255), label=None, txt_color=(255, 255, 255)):
|
|
"""
|
|
Function for drawing segmented object in bounding box shape.
|
|
|
|
Args:
|
|
mask (np.ndarray): A 2D array of shape (N, 2) containing the contour points of the segmented object.
|
|
mask_color (tuple): RGB color for the contour and label background.
|
|
label (str, optional): Text label for the object. If None, no label is drawn.
|
|
txt_color (tuple): RGB color for the label text.
|
|
"""
|
|
if mask.size == 0:
|
|
return
|
|
|
|
cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
|
|
text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)
|
|
|
|
cv2.rectangle(
|
|
self.im,
|
|
(int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
|
|
(int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
|
|
mask_color,
|
|
-1,
|
|
)
|
|
|
|
if label:
|
|
cv2.putText(
|
|
self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf
|
|
)
|
|
|
|
def plot_distance_and_line(self, pixels_distance, centroids, line_color, centroid_color):
|
|
"""
|
|
Plot the distance and line on frame.
|
|
|
|
Args:
|
|
pixels_distance (float): Pixels distance between two bbox centroids.
|
|
centroids (list): Bounding box centroids data.
|
|
line_color (tuple): RGB distance line color.
|
|
centroid_color (tuple): RGB bounding box centroid color.
|
|
"""
|
|
|
|
(text_width_m, text_height_m), _ = cv2.getTextSize(
|
|
f"Pixels Distance: {pixels_distance:.2f}", 0, self.sf, self.tf
|
|
)
|
|
|
|
|
|
top_left = (15, 25)
|
|
bottom_right = (15 + text_width_m + 20, 25 + text_height_m + 20)
|
|
cv2.rectangle(self.im, top_left, bottom_right, centroid_color, -1)
|
|
|
|
|
|
text_position = (top_left[0] + 10, top_left[1] + text_height_m + 10)
|
|
cv2.putText(
|
|
self.im,
|
|
f"Pixels Distance: {pixels_distance:.2f}",
|
|
text_position,
|
|
0,
|
|
self.sf,
|
|
(255, 255, 255),
|
|
self.tf,
|
|
cv2.LINE_AA,
|
|
)
|
|
|
|
cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
|
|
cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
|
|
cv2.circle(self.im, centroids[1], 6, centroid_color, -1)
|
|
|
|
def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255)):
|
|
"""
|
|
Function for pinpoint human-vision eye mapping and plotting.
|
|
|
|
Args:
|
|
box (list): Bounding box coordinates
|
|
center_point (tuple): center point for vision eye view
|
|
color (tuple): object centroid and line color value
|
|
pin_color (tuple): visioneye point color value
|
|
"""
|
|
center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
|
|
cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1)
|
|
cv2.circle(self.im, center_bbox, self.tf * 2, color, -1)
|
|
cv2.line(self.im, center_point, center_bbox, color, self.tf)
|
|
|
|
|
|
@TryExcept()
|
|
@plt_settings()
|
|
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
|
|
"""Plot training labels including class histograms and box statistics."""
|
|
import pandas
|
|
import seaborn
|
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
|
|
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
|
|
|
|
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
|
|
nc = int(cls.max() + 1)
|
|
boxes = boxes[:1000000]
|
|
x = pandas.DataFrame(boxes, columns=["x", "y", "width", "height"])
|
|
|
|
|
|
seaborn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
|
plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
|
|
plt.close()
|
|
|
|
|
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
|
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
|
for i in range(nc):
|
|
y[2].patches[i].set_color([x / 255 for x in colors(i)])
|
|
ax[0].set_ylabel("instances")
|
|
if 0 < len(names) < 30:
|
|
ax[0].set_xticks(range(len(names)))
|
|
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
|
|
else:
|
|
ax[0].set_xlabel("classes")
|
|
seaborn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
|
|
seaborn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)
|
|
|
|
|
|
boxes[:, 0:2] = 0.5
|
|
boxes = ops.xywh2xyxy(boxes) * 1000
|
|
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
|
|
for cls, box in zip(cls[:500], boxes[:500]):
|
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))
|
|
ax[1].imshow(img)
|
|
ax[1].axis("off")
|
|
|
|
for a in [0, 1, 2, 3]:
|
|
for s in ["top", "right", "left", "bottom"]:
|
|
ax[a].spines[s].set_visible(False)
|
|
|
|
fname = save_dir / "labels.jpg"
|
|
plt.savefig(fname, dpi=200)
|
|
plt.close()
|
|
if on_plot:
|
|
on_plot(fname)
|
|
|
|
|
|
def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
|
"""
|
|
Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.
|
|
|
|
This function takes a bounding box and an image, and then saves a cropped portion of the image according
|
|
to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding
|
|
adjustments to the bounding box.
|
|
|
|
Args:
|
|
xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.
|
|
im (numpy.ndarray): The input image.
|
|
file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.
|
|
gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.
|
|
pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.
|
|
square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.
|
|
BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.
|
|
save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.
|
|
|
|
Returns:
|
|
(numpy.ndarray): The cropped image.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils.plotting import save_one_box
|
|
|
|
xyxy = [50, 50, 150, 150]
|
|
im = cv2.imread("image.jpg")
|
|
cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True)
|
|
```
|
|
"""
|
|
if not isinstance(xyxy, torch.Tensor):
|
|
xyxy = torch.stack(xyxy)
|
|
b = ops.xyxy2xywh(xyxy.view(-1, 4))
|
|
if square:
|
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)
|
|
b[:, 2:] = b[:, 2:] * gain + pad
|
|
xyxy = ops.xywh2xyxy(b).long()
|
|
xyxy = ops.clip_boxes(xyxy, im.shape)
|
|
crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
|
|
if save:
|
|
file.parent.mkdir(parents=True, exist_ok=True)
|
|
f = str(increment_path(file).with_suffix(".jpg"))
|
|
|
|
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)
|
|
return crop
|
|
|
|
|
|
@threaded
|
|
def plot_images(
|
|
images: Union[torch.Tensor, np.ndarray],
|
|
batch_idx: Union[torch.Tensor, np.ndarray],
|
|
cls: Union[torch.Tensor, np.ndarray],
|
|
bboxes: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.float32),
|
|
confs: Optional[Union[torch.Tensor, np.ndarray]] = None,
|
|
masks: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.uint8),
|
|
kpts: Union[torch.Tensor, np.ndarray] = np.zeros((0, 51), dtype=np.float32),
|
|
paths: Optional[List[str]] = None,
|
|
fname: str = "images.jpg",
|
|
names: Optional[Dict[int, str]] = None,
|
|
on_plot: Optional[Callable] = None,
|
|
max_size: int = 1920,
|
|
max_subplots: int = 16,
|
|
save: bool = True,
|
|
conf_thres: float = 0.25,
|
|
) -> Optional[np.ndarray]:
|
|
"""
|
|
Plot image grid with labels, bounding boxes, masks, and keypoints.
|
|
|
|
Args:
|
|
images: Batch of images to plot. Shape: (batch_size, channels, height, width).
|
|
batch_idx: Batch indices for each detection. Shape: (num_detections,).
|
|
cls: Class labels for each detection. Shape: (num_detections,).
|
|
bboxes: Bounding boxes for each detection. Shape: (num_detections, 4) or (num_detections, 5) for rotated boxes.
|
|
confs: Confidence scores for each detection. Shape: (num_detections,).
|
|
masks: Instance segmentation masks. Shape: (num_detections, height, width) or (1, height, width).
|
|
kpts: Keypoints for each detection. Shape: (num_detections, 51).
|
|
paths: List of file paths for each image in the batch.
|
|
fname: Output filename for the plotted image grid.
|
|
names: Dictionary mapping class indices to class names.
|
|
on_plot: Optional callback function to be called after saving the plot.
|
|
max_size: Maximum size of the output image grid.
|
|
max_subplots: Maximum number of subplots in the image grid.
|
|
save: Whether to save the plotted image grid to a file.
|
|
conf_thres: Confidence threshold for displaying detections.
|
|
|
|
Returns:
|
|
np.ndarray: Plotted image grid as a numpy array if save is False, None otherwise.
|
|
|
|
Note:
|
|
This function supports both tensor and numpy array inputs. It will automatically
|
|
convert tensor inputs to numpy arrays for processing.
|
|
"""
|
|
if isinstance(images, torch.Tensor):
|
|
images = images.cpu().float().numpy()
|
|
if isinstance(cls, torch.Tensor):
|
|
cls = cls.cpu().numpy()
|
|
if isinstance(bboxes, torch.Tensor):
|
|
bboxes = bboxes.cpu().numpy()
|
|
if isinstance(masks, torch.Tensor):
|
|
masks = masks.cpu().numpy().astype(int)
|
|
if isinstance(kpts, torch.Tensor):
|
|
kpts = kpts.cpu().numpy()
|
|
if isinstance(batch_idx, torch.Tensor):
|
|
batch_idx = batch_idx.cpu().numpy()
|
|
|
|
bs, _, h, w = images.shape
|
|
bs = min(bs, max_subplots)
|
|
ns = np.ceil(bs**0.5)
|
|
if np.max(images[0]) <= 1:
|
|
images *= 255
|
|
|
|
|
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)
|
|
for i in range(bs):
|
|
x, y = int(w * (i // ns)), int(h * (i % ns))
|
|
mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)
|
|
|
|
|
|
scale = max_size / ns / max(h, w)
|
|
if scale < 1:
|
|
h = math.ceil(scale * h)
|
|
w = math.ceil(scale * w)
|
|
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
|
|
|
|
|
fs = int((h + w) * ns * 0.01)
|
|
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
|
for i in range(bs):
|
|
x, y = int(w * (i // ns)), int(h * (i % ns))
|
|
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)
|
|
if paths:
|
|
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))
|
|
if len(cls) > 0:
|
|
idx = batch_idx == i
|
|
classes = cls[idx].astype("int")
|
|
labels = confs is None
|
|
|
|
if len(bboxes):
|
|
boxes = bboxes[idx]
|
|
conf = confs[idx] if confs is not None else None
|
|
if len(boxes):
|
|
if boxes[:, :4].max() <= 1.1:
|
|
boxes[..., [0, 2]] *= w
|
|
boxes[..., [1, 3]] *= h
|
|
elif scale < 1:
|
|
boxes[..., :4] *= scale
|
|
boxes[..., 0] += x
|
|
boxes[..., 1] += y
|
|
is_obb = boxes.shape[-1] == 5
|
|
boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
|
|
for j, box in enumerate(boxes.astype(np.int64).tolist()):
|
|
c = classes[j]
|
|
color = colors(c)
|
|
c = names.get(c, c) if names else c
|
|
if labels or conf[j] > conf_thres:
|
|
label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
|
|
annotator.box_label(box, label, color=color, rotated=is_obb)
|
|
|
|
elif len(classes):
|
|
for c in classes:
|
|
color = colors(c)
|
|
c = names.get(c, c) if names else c
|
|
annotator.text((x, y), f"{c}", txt_color=color, box_style=True)
|
|
|
|
|
|
if len(kpts):
|
|
kpts_ = kpts[idx].copy()
|
|
if len(kpts_):
|
|
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01:
|
|
kpts_[..., 0] *= w
|
|
kpts_[..., 1] *= h
|
|
elif scale < 1:
|
|
kpts_ *= scale
|
|
kpts_[..., 0] += x
|
|
kpts_[..., 1] += y
|
|
for j in range(len(kpts_)):
|
|
if labels or conf[j] > conf_thres:
|
|
annotator.kpts(kpts_[j], conf_thres=conf_thres)
|
|
|
|
|
|
if len(masks):
|
|
if idx.shape[0] == masks.shape[0]:
|
|
image_masks = masks[idx]
|
|
else:
|
|
image_masks = masks[[i]]
|
|
nl = idx.sum()
|
|
index = np.arange(nl).reshape((nl, 1, 1)) + 1
|
|
image_masks = np.repeat(image_masks, nl, axis=0)
|
|
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
|
|
|
im = np.asarray(annotator.im).copy()
|
|
for j in range(len(image_masks)):
|
|
if labels or conf[j] > conf_thres:
|
|
color = colors(classes[j])
|
|
mh, mw = image_masks[j].shape
|
|
if mh != h or mw != w:
|
|
mask = image_masks[j].astype(np.uint8)
|
|
mask = cv2.resize(mask, (w, h))
|
|
mask = mask.astype(bool)
|
|
else:
|
|
mask = image_masks[j].astype(bool)
|
|
try:
|
|
im[y : y + h, x : x + w, :][mask] = (
|
|
im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
|
|
)
|
|
except:
|
|
pass
|
|
annotator.fromarray(im)
|
|
if not save:
|
|
return np.asarray(annotator.im)
|
|
annotator.im.save(fname)
|
|
if on_plot:
|
|
on_plot(fname)
|
|
|
|
|
|
@plt_settings()
|
|
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
|
|
"""
|
|
Plot training results from a results CSV file. The function supports various types of data including segmentation,
|
|
pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.
|
|
|
|
Args:
|
|
file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.
|
|
dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.
|
|
segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.
|
|
pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.
|
|
classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.
|
|
on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.
|
|
Defaults to None.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils.plotting import plot_results
|
|
|
|
plot_results("path/to/results.csv", segment=True)
|
|
```
|
|
"""
|
|
import pandas as pd
|
|
from scipy.ndimage import gaussian_filter1d
|
|
|
|
save_dir = Path(file).parent if file else Path(dir)
|
|
if classify:
|
|
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
|
|
index = [1, 4, 2, 3]
|
|
elif segment:
|
|
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
|
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
|
|
elif pose:
|
|
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
|
|
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
|
|
else:
|
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
|
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
|
|
ax = ax.ravel()
|
|
files = list(save_dir.glob("results*.csv"))
|
|
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
|
|
for f in files:
|
|
try:
|
|
data = pd.read_csv(f)
|
|
s = [x.strip() for x in data.columns]
|
|
x = data.values[:, 0]
|
|
for i, j in enumerate(index):
|
|
y = data.values[:, j].astype("float")
|
|
|
|
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)
|
|
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)
|
|
ax[i].set_title(s[j], fontsize=12)
|
|
|
|
|
|
except Exception as e:
|
|
LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
|
|
ax[1].legend()
|
|
fname = save_dir / "results.png"
|
|
fig.savefig(fname, dpi=200)
|
|
plt.close()
|
|
if on_plot:
|
|
on_plot(fname)
|
|
|
|
|
|
def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
|
|
"""
|
|
Plots a scatter plot with points colored based on a 2D histogram.
|
|
|
|
Args:
|
|
v (array-like): Values for the x-axis.
|
|
f (array-like): Values for the y-axis.
|
|
bins (int, optional): Number of bins for the histogram. Defaults to 20.
|
|
cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.
|
|
alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.
|
|
edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.
|
|
|
|
Examples:
|
|
>>> v = np.random.rand(100)
|
|
>>> f = np.random.rand(100)
|
|
>>> plt_color_scatter(v, f)
|
|
"""
|
|
|
|
hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
|
|
colors = [
|
|
hist[
|
|
min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
|
|
min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
|
|
]
|
|
for i in range(len(v))
|
|
]
|
|
|
|
|
|
plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)
|
|
|
|
|
|
def plot_tune_results(csv_file="tune_results.csv"):
|
|
"""
|
|
Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key
|
|
in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.
|
|
|
|
Args:
|
|
csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.
|
|
|
|
Examples:
|
|
>>> plot_tune_results("path/to/tune_results.csv")
|
|
"""
|
|
import pandas as pd
|
|
from scipy.ndimage import gaussian_filter1d
|
|
|
|
def _save_one_file(file):
|
|
"""Save one matplotlib plot to 'file'."""
|
|
plt.savefig(file, dpi=200)
|
|
plt.close()
|
|
LOGGER.info(f"Saved {file}")
|
|
|
|
|
|
csv_file = Path(csv_file)
|
|
data = pd.read_csv(csv_file)
|
|
num_metrics_columns = 1
|
|
keys = [x.strip() for x in data.columns][num_metrics_columns:]
|
|
x = data.values
|
|
fitness = x[:, 0]
|
|
j = np.argmax(fitness)
|
|
n = math.ceil(len(keys) ** 0.5)
|
|
plt.figure(figsize=(10, 10), tight_layout=True)
|
|
for i, k in enumerate(keys):
|
|
v = x[:, i + num_metrics_columns]
|
|
mu = v[j]
|
|
plt.subplot(n, n, i + 1)
|
|
plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
|
|
plt.plot(mu, fitness.max(), "k+", markersize=15)
|
|
plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})
|
|
plt.tick_params(axis="both", labelsize=8)
|
|
if i % n != 0:
|
|
plt.yticks([])
|
|
_save_one_file(csv_file.with_name("tune_scatter_plots.png"))
|
|
|
|
|
|
x = range(1, len(fitness) + 1)
|
|
plt.figure(figsize=(10, 6), tight_layout=True)
|
|
plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
|
|
plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2)
|
|
plt.title("Fitness vs Iteration")
|
|
plt.xlabel("Iteration")
|
|
plt.ylabel("Fitness")
|
|
plt.grid(True)
|
|
plt.legend()
|
|
_save_one_file(csv_file.with_name("tune_fitness.png"))
|
|
|
|
|
|
def output_to_target(output, max_det=300):
|
|
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
|
|
targets = []
|
|
for i, o in enumerate(output):
|
|
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
|
|
j = torch.full((conf.shape[0], 1), i)
|
|
targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
|
|
targets = torch.cat(targets, 0).numpy()
|
|
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]
|
|
|
|
|
|
def output_to_rotated_target(output, max_det=300):
|
|
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
|
|
targets = []
|
|
for i, o in enumerate(output):
|
|
box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
|
|
j = torch.full((conf.shape[0], 1), i)
|
|
targets.append(torch.cat((j, cls, box, angle, conf), 1))
|
|
targets = torch.cat(targets, 0).numpy()
|
|
return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]
|
|
|
|
|
|
def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
|
|
"""
|
|
Visualize feature maps of a given model module during inference.
|
|
|
|
Args:
|
|
x (torch.Tensor): Features to be visualized.
|
|
module_type (str): Module type.
|
|
stage (int): Module stage within the model.
|
|
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
|
|
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
|
|
"""
|
|
for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}:
|
|
if m in module_type:
|
|
return
|
|
if isinstance(x, torch.Tensor):
|
|
_, channels, height, width = x.shape
|
|
if height > 1 and width > 1:
|
|
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"
|
|
|
|
blocks = torch.chunk(x[0].cpu(), channels, dim=0)
|
|
n = min(n, channels)
|
|
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)
|
|
ax = ax.ravel()
|
|
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
|
for i in range(n):
|
|
ax[i].imshow(blocks[i].squeeze())
|
|
ax[i].axis("off")
|
|
|
|
LOGGER.info(f"Saving {f}... ({n}/{channels})")
|
|
plt.savefig(f, dpi=300, bbox_inches="tight")
|
|
plt.close()
|
|
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())
|
|
|