akswelh commited on
Commit
f6228f9
·
verified ·
1 Parent(s): 9517675

Upload 663 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .github/ISSUE_TEMPLATE/bug-report.yml +97 -0
  2. .github/ISSUE_TEMPLATE/config.yml +16 -0
  3. .github/ISSUE_TEMPLATE/feature-request.yml +52 -0
  4. .github/ISSUE_TEMPLATE/question.yml +35 -0
  5. .github/dependabot.yml +27 -0
  6. .github/workflows/ci.yaml +359 -0
  7. .github/workflows/cla.yml +44 -0
  8. .github/workflows/codeql.yaml +42 -0
  9. .github/workflows/docker.yaml +203 -0
  10. .github/workflows/docs.yml +98 -0
  11. .github/workflows/format.yml +62 -0
  12. .github/workflows/links.yml +93 -0
  13. .github/workflows/merge-main-into-prs.yml +87 -0
  14. .github/workflows/publish.yml +144 -0
  15. .github/workflows/stale.yml +47 -0
  16. .gitignore +171 -0
  17. CITATION.cff +26 -0
  18. CONTRIBUTING.md +166 -0
  19. LICENSE +661 -0
  20. README.md +278 -3
  21. README.zh-CN.md +278 -0
  22. docker/Dockerfile +93 -0
  23. docker/Dockerfile-arm64 +58 -0
  24. docker/Dockerfile-conda +50 -0
  25. docker/Dockerfile-cpu +62 -0
  26. docker/Dockerfile-jetson-jetpack4 +69 -0
  27. docker/Dockerfile-jetson-jetpack5 +62 -0
  28. docker/Dockerfile-jetson-jetpack6 +59 -0
  29. docker/Dockerfile-python +59 -0
  30. docker/Dockerfile-runner +45 -0
  31. docs/README.md +146 -0
  32. docs/build_docs.py +258 -0
  33. docs/build_reference.py +147 -0
  34. docs/coming_soon_template.md +34 -0
  35. docs/en/CNAME +1 -0
  36. docs/en/datasets/classify/caltech101.md +152 -0
  37. docs/en/datasets/classify/caltech256.md +146 -0
  38. docs/en/datasets/classify/cifar10.md +173 -0
  39. docs/en/datasets/classify/cifar100.md +130 -0
  40. docs/en/datasets/classify/fashion-mnist.md +139 -0
  41. docs/en/datasets/classify/imagenet.md +132 -0
  42. docs/en/datasets/classify/imagenet10.md +127 -0
  43. docs/en/datasets/classify/imagenette.md +193 -0
  44. docs/en/datasets/classify/imagewoof.md +148 -0
  45. docs/en/datasets/classify/index.md +220 -0
  46. docs/en/datasets/classify/mnist.md +127 -0
  47. docs/en/datasets/detect/african-wildlife.md +147 -0
  48. docs/en/datasets/detect/argoverse.md +153 -0
  49. docs/en/datasets/detect/brain-tumor.md +168 -0
  50. docs/en/datasets/detect/coco.md +173 -0
.github/ISSUE_TEMPLATE/bug-report.yml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ name: 🐛 Bug Report
4
+ # title: " "
5
+ description: Problems with Ultralytics YOLO
6
+ labels: [bug, triage]
7
+ body:
8
+ - type: markdown
9
+ attributes:
10
+ value: |
11
+ Thank you for submitting an Ultralytics YOLO 🐛 Bug Report!
12
+
13
+ - type: checkboxes
14
+ attributes:
15
+ label: Search before asking
16
+ description: >
17
+ Please search the Ultralytics [Docs](https://docs.ultralytics.com) and [issues](https://github.com/ultralytics/ultralytics/issues) to see if a similar bug report already exists.
18
+ options:
19
+ - label: >
20
+ I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report.
21
+ required: true
22
+
23
+ - type: dropdown
24
+ attributes:
25
+ label: Ultralytics YOLO Component
26
+ description: |
27
+ Please select the Ultralytics YOLO component where you found the bug.
28
+ multiple: true
29
+ options:
30
+ - "Install"
31
+ - "Train"
32
+ - "Val"
33
+ - "Predict"
34
+ - "Export"
35
+ - "Multi-GPU"
36
+ - "Augmentation"
37
+ - "Hyperparameter Tuning"
38
+ - "Integrations"
39
+ - "Other"
40
+ validations:
41
+ required: false
42
+
43
+ - type: textarea
44
+ attributes:
45
+ label: Bug
46
+ description: Please provide as much information as possible. Copy and paste console output and error messages. Use [Markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to format text, code and logs. If necessary, include screenshots for visual elements only. Providing detailed information will help us resolve the issue more efficiently.
47
+ placeholder: |
48
+ 💡 ProTip! Include as much information as possible (logs, tracebacks, screenshots, etc.) to receive the most helpful response.
49
+ validations:
50
+ required: true
51
+
52
+ - type: textarea
53
+ attributes:
54
+ label: Environment
55
+ description: Many issues are often related to dependency versions and hardware. Please provide the output of `yolo checks` or `ultralytics.checks()` command to help us diagnose the problem.
56
+ placeholder: |
57
+ Paste output of `yolo checks` or `ultralytics.checks()` command, i.e.:
58
+ ```
59
+ Ultralytics 8.3.2 🚀 Python-3.11.2 torch-2.4.1 CPU (Apple M3)
60
+ Setup complete ✅ (8 CPUs, 16.0 GB RAM, 266.5/460.4 GB disk)
61
+
62
+ OS macOS-13.5.2
63
+ Environment Jupyter
64
+ Python 3.11.2
65
+ Install git
66
+ RAM 16.00 GB
67
+ CPU Apple M3
68
+ CUDA None
69
+ ```
70
+ validations:
71
+ required: true
72
+
73
+ - type: textarea
74
+ attributes:
75
+ label: Minimal Reproducible Example
76
+ description: >
77
+ When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem. This is referred to by community members as creating a [minimal reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/).
78
+ placeholder: |
79
+ ```
80
+ # Code to reproduce your issue here
81
+ ```
82
+ validations:
83
+ required: true
84
+
85
+ - type: textarea
86
+ attributes:
87
+ label: Additional
88
+ description: Anything else you would like to share?
89
+
90
+ - type: checkboxes
91
+ attributes:
92
+ label: Are you willing to submit a PR?
93
+ description: >
94
+ (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/ultralytics/pulls) (PR) to help improve Ultralytics YOLO for everyone, especially if you have a good understanding of how to implement a fix or feature.
95
+ See the Ultralytics YOLO [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
96
+ options:
97
+ - label: Yes I'd like to help by submitting a PR!
.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ blank_issues_enabled: true
4
+ contact_links:
5
+ - name: 📄 Docs
6
+ url: https://docs.ultralytics.com/
7
+ about: Full Ultralytics YOLO Documentation
8
+ - name: 💬 Forum
9
+ url: https://community.ultralytics.com/
10
+ about: Ask on Ultralytics Community Forum
11
+ - name: 🎧 Discord
12
+ url: https://ultralytics.com/discord
13
+ about: Ask on Ultralytics Discord
14
+ - name: ⌨️ Reddit
15
+ url: https://reddit.com/r/ultralytics
16
+ about: Ask on Ultralytics Subreddit
.github/ISSUE_TEMPLATE/feature-request.yml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ name: 🚀 Feature Request
4
+ description: Suggest an Ultralytics YOLO idea
5
+ # title: " "
6
+ labels: [enhancement]
7
+ body:
8
+ - type: markdown
9
+ attributes:
10
+ value: |
11
+ Thank you for submitting an Ultralytics 🚀 Feature Request!
12
+
13
+ - type: checkboxes
14
+ attributes:
15
+ label: Search before asking
16
+ description: >
17
+ Please search the Ultralytics [Docs](https://docs.ultralytics.com) and [issues](https://github.com/ultralytics/ultralytics/issues) to see if a similar feature request already exists.
18
+ options:
19
+ - label: >
20
+ I have searched the Ultralytics [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar feature requests.
21
+ required: true
22
+
23
+ - type: textarea
24
+ attributes:
25
+ label: Description
26
+ description: A short description of your feature.
27
+ placeholder: |
28
+ What new feature would you like to see in YOLO?
29
+ validations:
30
+ required: true
31
+
32
+ - type: textarea
33
+ attributes:
34
+ label: Use case
35
+ description: |
36
+ Describe the use case of your feature request. It will help us understand and prioritize the feature request.
37
+ placeholder: |
38
+ How would this feature be used, and who would use it?
39
+
40
+ - type: textarea
41
+ attributes:
42
+ label: Additional
43
+ description: Anything else you would like to share?
44
+
45
+ - type: checkboxes
46
+ attributes:
47
+ label: Are you willing to submit a PR?
48
+ description: >
49
+ (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/ultralytics/pulls) (PR) to help improve YOLO for everyone, especially if you have a good understanding of how to implement a fix or feature.
50
+ See the Ultralytics [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started.
51
+ options:
52
+ - label: Yes I'd like to help by submitting a PR!
.github/ISSUE_TEMPLATE/question.yml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ name: ❓ Question
4
+ description: Ask an Ultralytics YOLO question
5
+ # title: " "
6
+ labels: [question]
7
+ body:
8
+ - type: markdown
9
+ attributes:
10
+ value: |
11
+ Thank you for asking an Ultralytics YOLO ❓ Question!
12
+
13
+ - type: checkboxes
14
+ attributes:
15
+ label: Search before asking
16
+ description: >
17
+ Please search the Ultralytics [Docs](https://docs.ultralytics.com), [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) to see if a similar question already exists.
18
+ options:
19
+ - label: >
20
+ I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/ultralytics/ultralytics/discussions) and found no similar questions.
21
+ required: true
22
+
23
+ - type: textarea
24
+ attributes:
25
+ label: Question
26
+ description: What is your question? Please provide as much information as possible. Include detailed code examples to reproduce the problem and describe the context in which the issue occurs. Format your text and code using [Markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for clarity and readability. Following these guidelines will help us assist you more effectively.
27
+ placeholder: |
28
+ 💡 ProTip! Include as much information as possible (logs, tracebacks, screenshots etc.) to receive the most helpful response.
29
+ validations:
30
+ required: true
31
+
32
+ - type: textarea
33
+ attributes:
34
+ label: Additional
35
+ description: Anything else you would like to share?
.github/dependabot.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Dependabot for package version updates
3
+ # https://docs.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
4
+
5
+ version: 2
6
+ updates:
7
+ - package-ecosystem: pip
8
+ directory: "/"
9
+ schedule:
10
+ interval: weekly
11
+ time: "04:00"
12
+ open-pull-requests-limit: 10
13
+ reviewers:
14
+ - glenn-jocher
15
+ labels:
16
+ - dependencies
17
+
18
+ - package-ecosystem: github-actions
19
+ directory: "/.github/workflows"
20
+ schedule:
21
+ interval: weekly
22
+ time: "04:00"
23
+ open-pull-requests-limit: 5
24
+ reviewers:
25
+ - glenn-jocher
26
+ labels:
27
+ - dependencies
.github/workflows/ci.yaml ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # YOLO Continuous Integration (CI) GitHub Actions tests
3
+
4
+ name: Ultralytics CI
5
+
6
+ on:
7
+ push:
8
+ branches: [main]
9
+ pull_request:
10
+ branches: [main]
11
+ schedule:
12
+ - cron: "0 8 * * *" # runs at 08:00 UTC every day
13
+ workflow_dispatch:
14
+ inputs:
15
+ hub:
16
+ description: "Run HUB"
17
+ default: false
18
+ type: boolean
19
+ benchmarks:
20
+ description: "Run Benchmarks"
21
+ default: false
22
+ type: boolean
23
+ tests:
24
+ description: "Run Tests"
25
+ default: false
26
+ type: boolean
27
+ gpu:
28
+ description: "Run GPU"
29
+ default: false
30
+ type: boolean
31
+ raspberrypi:
32
+ description: "Run Raspberry Pi"
33
+ default: false
34
+ type: boolean
35
+ conda:
36
+ description: "Run Conda"
37
+ default: false
38
+ type: boolean
39
+
40
+ jobs:
41
+ HUB:
42
+ if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push' || (github.event_name == 'workflow_dispatch' && github.event.inputs.hub == 'true'))
43
+ runs-on: ${{ matrix.os }}
44
+ strategy:
45
+ fail-fast: false
46
+ matrix:
47
+ os: [ubuntu-latest]
48
+ python-version: ["3.11"]
49
+ steps:
50
+ - uses: actions/checkout@v4
51
+ - uses: actions/setup-python@v5
52
+ with:
53
+ python-version: ${{ matrix.python-version }}
54
+ cache: "pip" # caching pip dependencies
55
+ - name: Install requirements
56
+ shell: bash # for Windows compatibility
57
+ run: |
58
+ python -m pip install --upgrade pip wheel
59
+ pip install . --extra-index-url https://download.pytorch.org/whl/cpu
60
+ - name: Check environment
61
+ run: |
62
+ yolo checks
63
+ pip list
64
+ - name: Test HUB training
65
+ shell: python
66
+ env:
67
+ API_KEY: ${{ secrets.ULTRALYTICS_HUB_API_KEY }}
68
+ MODEL_ID: ${{ secrets.ULTRALYTICS_HUB_MODEL_ID }}
69
+ run: |
70
+ import os
71
+ from ultralytics import YOLO, hub
72
+ api_key, model_id = os.environ['API_KEY'], os.environ['MODEL_ID']
73
+ hub.login(api_key)
74
+ hub.reset_model(model_id)
75
+ model = YOLO('https://hub.ultralytics.com/models/' + model_id)
76
+ model.train()
77
+ - name: Test HUB inference API
78
+ shell: python
79
+ env:
80
+ API_KEY: ${{ secrets.ULTRALYTICS_HUB_API_KEY }}
81
+ MODEL_ID: ${{ secrets.ULTRALYTICS_HUB_MODEL_ID }}
82
+ run: |
83
+ import os
84
+ import requests
85
+ import json
86
+ api_key, model_id = os.environ['API_KEY'], os.environ['MODEL_ID']
87
+ url = f"https://api.ultralytics.com/v1/predict/{model_id}"
88
+ headers = {"x-api-key": api_key}
89
+ data = {"size": 320, "confidence": 0.25, "iou": 0.45}
90
+ with open("ultralytics/assets/zidane.jpg", "rb") as f:
91
+ response = requests.post(url, headers=headers, data=data, files={"image": f})
92
+ assert response.status_code == 200, f'Status code {response.status_code}, Reason {response.reason}'
93
+ print(json.dumps(response.json(), indent=2))
94
+
95
+ Benchmarks:
96
+ if: github.event_name != 'workflow_dispatch' || github.event.inputs.benchmarks == 'true'
97
+ runs-on: ${{ matrix.os }}
98
+ strategy:
99
+ fail-fast: false
100
+ matrix:
101
+ os: [ubuntu-latest, windows-latest, macos-14]
102
+ python-version: ["3.11"]
103
+ model: [yolo11n]
104
+ steps:
105
+ - uses: actions/checkout@v4
106
+ - uses: actions/setup-python@v5
107
+ with:
108
+ python-version: ${{ matrix.python-version }}
109
+ cache: "pip" # caching pip dependencies
110
+ - name: Install requirements
111
+ shell: bash # for Windows compatibility
112
+ run: |
113
+ python -m pip install --upgrade pip wheel
114
+ pip install -e ".[export]" "coverage[toml]" --extra-index-url https://download.pytorch.org/whl/cpu
115
+ - name: Check environment
116
+ run: |
117
+ yolo checks
118
+ pip list
119
+ - name: Benchmark DetectionModel
120
+ shell: bash
121
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/${{ matrix.model }}.pt' imgsz=160 verbose=0.309
122
+ - name: Benchmark ClassificationModel
123
+ shell: bash
124
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/${{ matrix.model }}-cls.pt' imgsz=160 verbose=0.249
125
+ - name: Benchmark YOLOWorld DetectionModel
126
+ shell: bash
127
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/yolov8s-worldv2.pt' imgsz=160 verbose=0.337
128
+ - name: Benchmark SegmentationModel
129
+ shell: bash
130
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/${{ matrix.model }}-seg.pt' imgsz=160 verbose=0.195
131
+ - name: Benchmark PoseModel
132
+ shell: bash
133
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/${{ matrix.model }}-pose.pt' imgsz=160 verbose=0.197
134
+ - name: Benchmark OBBModel
135
+ shell: bash
136
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/${{ matrix.model }}-obb.pt' imgsz=160 verbose=0.597
137
+ - name: Benchmark YOLOv10Model
138
+ shell: bash
139
+ run: coverage run -a --source=ultralytics -m ultralytics.cfg.__init__ benchmark model='path with spaces/yolov10n.pt' imgsz=160 verbose=0.205
140
+ - name: Merge Coverage Reports
141
+ run: |
142
+ coverage xml -o coverage-benchmarks.xml
143
+ - name: Upload Coverage Reports to CodeCov
144
+ if: github.repository == 'ultralytics/ultralytics'
145
+ uses: codecov/codecov-action@v4
146
+ with:
147
+ flags: Benchmarks
148
+ env:
149
+ CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
150
+ - name: Benchmark Summary
151
+ run: |
152
+ cat benchmarks.log
153
+ echo "$(cat benchmarks.log)" >> $GITHUB_STEP_SUMMARY
154
+
155
+ Tests:
156
+ if: github.event_name != 'workflow_dispatch' || github.event.inputs.tests == 'true'
157
+ timeout-minutes: 360
158
+ runs-on: ${{ matrix.os }}
159
+ strategy:
160
+ fail-fast: false
161
+ matrix:
162
+ os: [ubuntu-latest, macos-14, windows-latest]
163
+ python-version: ["3.11"]
164
+ torch: [latest]
165
+ include:
166
+ - os: ubuntu-latest
167
+ python-version: "3.8" # torch 1.8.0 requires python >=3.6, <=3.8
168
+ torch: "1.8.0" # min torch version CI https://pypi.org/project/torchvision/
169
+ steps:
170
+ - uses: actions/checkout@v4
171
+ - uses: actions/setup-python@v5
172
+ with:
173
+ python-version: ${{ matrix.python-version }}
174
+ cache: "pip" # caching pip dependencies
175
+ - name: Install requirements
176
+ shell: bash # for Windows compatibility
177
+ run: |
178
+ # CoreML must be installed before export due to protobuf error from AutoInstall
179
+ python -m pip install --upgrade pip wheel
180
+ slow=""
181
+ torch=""
182
+ if [ "${{ matrix.torch }}" == "1.8.0" ]; then
183
+ torch="torch==1.8.0 torchvision==0.9.0"
184
+ fi
185
+ if [[ "${{ github.event_name }}" =~ ^(schedule|workflow_dispatch)$ ]]; then
186
+ slow="pycocotools mlflow ray[tune]"
187
+ fi
188
+ pip install -e ".[export]" $torch $slow pytest-cov --extra-index-url https://download.pytorch.org/whl/cpu
189
+ - name: Check environment
190
+ run: |
191
+ yolo checks
192
+ pip list
193
+ - name: Pytest tests
194
+ shell: bash # for Windows compatibility
195
+ run: |
196
+ slow=""
197
+ if [[ "${{ github.event_name }}" =~ ^(schedule|workflow_dispatch)$ ]]; then
198
+ slow="--slow"
199
+ fi
200
+ pytest $slow --cov=ultralytics/ --cov-report xml tests/
201
+ - name: Upload Coverage Reports to CodeCov
202
+ if: github.repository == 'ultralytics/ultralytics' # && matrix.os == 'ubuntu-latest' && matrix.python-version == '3.11'
203
+ uses: codecov/codecov-action@v4
204
+ with:
205
+ flags: Tests
206
+ env:
207
+ CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
208
+
209
+ GPU:
210
+ if: github.repository == 'ultralytics/ultralytics' && (github.event_name != 'workflow_dispatch' || github.event.inputs.gpu == 'true')
211
+ timeout-minutes: 360
212
+ runs-on: gpu-latest
213
+ steps:
214
+ - uses: actions/checkout@v4
215
+ - name: Install requirements
216
+ run: pip install . pytest-cov
217
+ - name: Check environment
218
+ run: |
219
+ yolo checks
220
+ pip list
221
+ - name: Pytest tests
222
+ run: |
223
+ slow=""
224
+ if [[ "${{ github.event_name }}" =~ ^(schedule|workflow_dispatch)$ ]]; then
225
+ slow="--slow"
226
+ fi
227
+ pytest $slow --cov=ultralytics/ --cov-report xml tests/test_cuda.py
228
+ - name: Upload Coverage Reports to CodeCov
229
+ uses: codecov/codecov-action@v4
230
+ with:
231
+ flags: GPU
232
+ env:
233
+ CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
234
+
235
+ RaspberryPi:
236
+ if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event.inputs.raspberrypi == 'true')
237
+ timeout-minutes: 120
238
+ runs-on: raspberry-pi
239
+ steps:
240
+ - uses: actions/checkout@v4
241
+ - name: Activate Virtual Environment
242
+ run: |
243
+ python3.11 -m venv env
244
+ source env/bin/activate
245
+ echo PATH=$PATH >> $GITHUB_ENV
246
+ - name: Install requirements
247
+ run: |
248
+ python -m pip install --upgrade pip wheel
249
+ pip install -e ".[export]" pytest mlflow pycocotools "ray[tune]"
250
+ - name: Check environment
251
+ run: |
252
+ yolo checks
253
+ pip list
254
+ - name: Pytest tests
255
+ run: pytest --slow tests/
256
+ - name: Benchmark ClassificationModel
257
+ run: python -m ultralytics.cfg.__init__ benchmark model='yolo11n-cls.pt' imgsz=160 verbose=0.249
258
+ - name: Benchmark YOLOWorld DetectionModel
259
+ run: python -m ultralytics.cfg.__init__ benchmark model='yolov8s-worldv2.pt' imgsz=160 verbose=0.337
260
+ - name: Benchmark SegmentationModel
261
+ run: python -m ultralytics.cfg.__init__ benchmark model='yolo11n-seg.pt' imgsz=160 verbose=0.195
262
+ - name: Benchmark PoseModel
263
+ run: python -m ultralytics.cfg.__init__ benchmark model='yolo11n-pose.pt' imgsz=160 verbose=0.197
264
+ - name: Benchmark OBBModel
265
+ run: python -m ultralytics.cfg.__init__ benchmark model='yolo11n-obb.pt' imgsz=160 verbose=0.597
266
+ - name: Benchmark YOLOv10Model
267
+ run: python -m ultralytics.cfg.__init__ benchmark model='yolov10n.pt' imgsz=160 verbose=0.205
268
+ - name: Benchmark Summary
269
+ run: |
270
+ cat benchmarks.log
271
+ echo "$(cat benchmarks.log)" >> $GITHUB_STEP_SUMMARY
272
+ # The below is fixed in: https://github.com/ultralytics/ultralytics/pull/15987
273
+ # - name: Reboot # run a reboot command in the background to free resources for next run and not crash main thread
274
+ # run: sudo bash -c "sleep 10; reboot" &
275
+
276
+ Conda:
277
+ if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event.inputs.conda == 'true')
278
+ continue-on-error: true
279
+ runs-on: ${{ matrix.os }}
280
+ strategy:
281
+ fail-fast: false
282
+ matrix:
283
+ os: [ubuntu-latest]
284
+ python-version: ["3.11"]
285
+ defaults:
286
+ run:
287
+ shell: bash -el {0}
288
+ steps:
289
+ - uses: conda-incubator/setup-miniconda@v3
290
+ with:
291
+ python-version: ${{ matrix.python-version }}
292
+ mamba-version: "*"
293
+ channels: conda-forge,defaults
294
+ channel-priority: true
295
+ activate-environment: anaconda-client-env
296
+ - name: Cleanup toolcache
297
+ run: |
298
+ echo "Free space before deletion:"
299
+ df -h /
300
+ rm -rf /opt/hostedtoolcache
301
+ echo "Free space after deletion:"
302
+ df -h /
303
+ - name: Install Linux packages
304
+ run: |
305
+ # Fix cv2 ImportError: 'libEGL.so.1: cannot open shared object file: No such file or directory'
306
+ sudo apt-get update
307
+ sudo apt-get install -y libegl1 libopengl0
308
+ - name: Install Libmamba
309
+ run: |
310
+ conda config --set solver libmamba
311
+ - name: Install Ultralytics package from conda-forge
312
+ run: |
313
+ conda install -c pytorch -c conda-forge pytorch torchvision ultralytics openvino
314
+ - name: Install pip packages
315
+ run: |
316
+ # CoreML must be installed before export due to protobuf error from AutoInstall
317
+ pip install pytest "coremltools>=7.0; platform_system != 'Windows' and python_version <= '3.11'"
318
+ - name: Check environment
319
+ run: |
320
+ conda list
321
+ - name: Test CLI
322
+ run: |
323
+ yolo predict model=yolo11n.pt imgsz=320
324
+ yolo train model=yolo11n.pt data=coco8.yaml epochs=1 imgsz=32
325
+ yolo val model=yolo11n.pt data=coco8.yaml imgsz=32
326
+ yolo export model=yolo11n.pt format=torchscript imgsz=160
327
+ - name: Test Python
328
+ # Note this step must use the updated default bash environment, not a python environment
329
+ run: |
330
+ python -c "
331
+ from ultralytics import YOLO
332
+ model = YOLO('yolo11n.pt')
333
+ results = model.train(data='coco8.yaml', epochs=3, imgsz=160)
334
+ results = model.val(imgsz=160)
335
+ results = model.predict(imgsz=160)
336
+ results = model.export(format='onnx', imgsz=160)
337
+ "
338
+ - name: PyTest
339
+ run: |
340
+ VERSION=$(conda list ultralytics | grep ultralytics | awk '{print $2}')
341
+ echo "Ultralytics version: $VERSION"
342
+ git clone https://github.com/ultralytics/ultralytics.git
343
+ cd ultralytics
344
+ git checkout tags/v$VERSION
345
+ pytest tests
346
+
347
+ Summary:
348
+ runs-on: ubuntu-latest
349
+ needs: [HUB, Benchmarks, Tests, GPU, RaspberryPi, Conda] # Add job names that you want to check for failure
350
+ if: always() # This ensures the job runs even if previous jobs fail
351
+ steps:
352
+ - name: Check for failure and notify
353
+ if: (needs.HUB.result == 'failure' || needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.GPU.result == 'failure' || needs.RaspberryPi.result == 'failure' || needs.Conda.result == 'failure' ) && github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push')
354
+ uses: slackapi/[email protected]
355
+ with:
356
+ payload: |
357
+ {"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"}
358
+ env:
359
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
.github/workflows/cla.yml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Ultralytics Contributor License Agreement (CLA) action https://docs.ultralytics.com/help/CLA
3
+ # This workflow automatically requests Pull Requests (PR) authors to sign the Ultralytics CLA before PRs can be merged
4
+
5
+ name: CLA Assistant
6
+ on:
7
+ issue_comment:
8
+ types:
9
+ - created
10
+ pull_request_target:
11
+ types:
12
+ - reopened
13
+ - opened
14
+ - synchronize
15
+
16
+ permissions:
17
+ actions: write
18
+ contents: write
19
+ pull-requests: write
20
+ statuses: write
21
+
22
+ jobs:
23
+ CLA:
24
+ if: github.repository == 'ultralytics/ultralytics'
25
+ runs-on: ubuntu-latest
26
+ steps:
27
+ - name: CLA Assistant
28
+ if: (github.event.comment.body == 'recheck' || github.event.comment.body == 'I have read the CLA Document and I sign the CLA') || github.event_name == 'pull_request_target'
29
+ uses: contributor-assistant/[email protected]
30
+ env:
31
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
32
+ # Must be repository secret PAT
33
+ PERSONAL_ACCESS_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
34
+ with:
35
+ path-to-signatures: "signatures/version1/cla.json"
36
+ path-to-document: "https://docs.ultralytics.com/help/CLA" # CLA document
37
+ # Branch must not be protected
38
+ branch: cla-signatures
39
+ allowlist: dependabot[bot],github-actions,[pre-commit*,pre-commit*,bot*
40
+
41
+ remote-organization-name: ultralytics
42
+ remote-repository-name: cla
43
+ custom-pr-sign-comment: "I have read the CLA Document and I sign the CLA"
44
+ custom-allsigned-prcomment: All Contributors have signed the CLA. ✅
.github/workflows/codeql.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ name: "CodeQL"
4
+
5
+ on:
6
+ schedule:
7
+ - cron: "0 0 1 * *"
8
+ workflow_dispatch:
9
+
10
+ jobs:
11
+ analyze:
12
+ name: Analyze
13
+ runs-on: ${{ 'ubuntu-latest' }}
14
+ permissions:
15
+ actions: read
16
+ contents: read
17
+ security-events: write
18
+
19
+ strategy:
20
+ fail-fast: false
21
+ matrix:
22
+ language: ["python"]
23
+ # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python', 'ruby' ]
24
+
25
+ steps:
26
+ - name: Checkout repository
27
+ uses: actions/checkout@v4
28
+
29
+ # Initializes the CodeQL tools for scanning.
30
+ - name: Initialize CodeQL
31
+ uses: github/codeql-action/init@v3
32
+ with:
33
+ languages: ${{ matrix.language }}
34
+ # If you wish to specify custom queries, you can do so here or in a config file.
35
+ # By default, queries listed here will override any specified in a config file.
36
+ # Prefix the list here with "+" to use these queries and those in the config file.
37
+ # queries: security-extended,security-and-quality
38
+
39
+ - name: Perform CodeQL Analysis
40
+ uses: github/codeql-action/analyze@v3
41
+ with:
42
+ category: "/language:${{matrix.language}}"
.github/workflows/docker.yaml ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest images on DockerHub https://hub.docker.com/r/ultralytics
3
+
4
+ name: Publish Docker Images
5
+
6
+ on:
7
+ push:
8
+ branches: [main]
9
+ paths-ignore:
10
+ - "docs/**"
11
+ - "mkdocs.yml"
12
+ workflow_dispatch:
13
+ inputs:
14
+ Dockerfile:
15
+ type: boolean
16
+ description: Use Dockerfile
17
+ default: true
18
+ Dockerfile-cpu:
19
+ type: boolean
20
+ description: Use Dockerfile-cpu
21
+ default: true
22
+ Dockerfile-arm64:
23
+ type: boolean
24
+ description: Use Dockerfile-arm64
25
+ default: true
26
+ Dockerfile-jetson-jetpack6:
27
+ type: boolean
28
+ description: Use Dockerfile-jetson-jetpack6
29
+ default: true
30
+ Dockerfile-jetson-jetpack5:
31
+ type: boolean
32
+ description: Use Dockerfile-jetson-jetpack5
33
+ default: true
34
+ Dockerfile-jetson-jetpack4:
35
+ type: boolean
36
+ description: Use Dockerfile-jetson-jetpack4
37
+ default: true
38
+ Dockerfile-python:
39
+ type: boolean
40
+ description: Use Dockerfile-python
41
+ default: true
42
+ Dockerfile-conda:
43
+ type: boolean
44
+ description: Use Dockerfile-conda
45
+ default: true
46
+ push:
47
+ type: boolean
48
+ description: Publish all Images to Docker Hub
49
+
50
+ jobs:
51
+ docker:
52
+ if: github.repository == 'ultralytics/ultralytics'
53
+ name: Push
54
+ runs-on: ubuntu-latest
55
+ strategy:
56
+ fail-fast: false
57
+ max-parallel: 10
58
+ matrix:
59
+ include:
60
+ - dockerfile: "Dockerfile"
61
+ tags: "latest"
62
+ platforms: "linux/amd64"
63
+ - dockerfile: "Dockerfile-cpu"
64
+ tags: "latest-cpu"
65
+ platforms: "linux/amd64"
66
+ - dockerfile: "Dockerfile-arm64"
67
+ tags: "latest-arm64"
68
+ platforms: "linux/arm64"
69
+ - dockerfile: "Dockerfile-jetson-jetpack6"
70
+ tags: "latest-jetson-jetpack6"
71
+ platforms: "linux/arm64"
72
+ - dockerfile: "Dockerfile-jetson-jetpack5"
73
+ tags: "latest-jetson-jetpack5"
74
+ platforms: "linux/arm64"
75
+ - dockerfile: "Dockerfile-jetson-jetpack4"
76
+ tags: "latest-jetson-jetpack4"
77
+ platforms: "linux/arm64"
78
+ - dockerfile: "Dockerfile-python"
79
+ tags: "latest-python"
80
+ platforms: "linux/amd64"
81
+ # - dockerfile: "Dockerfile-conda"
82
+ # tags: "latest-conda"
83
+ # platforms: "linux/amd64"
84
+ outputs:
85
+ new_release: ${{ steps.check_tag.outputs.new_release }}
86
+ steps:
87
+ - name: Cleanup disk
88
+ # Free up to 30GB of disk space per https://github.com/ultralytics/ultralytics/pull/15848
89
+ uses: jlumbroso/[email protected]
90
+ with:
91
+ tool-cache: true
92
+
93
+ - name: Checkout repo
94
+ uses: actions/checkout@v4
95
+ with:
96
+ fetch-depth: 0 # copy full .git directory to access full git history in Docker images
97
+
98
+ - name: Set up QEMU
99
+ uses: docker/setup-qemu-action@v3
100
+
101
+ - name: Set up Docker Buildx
102
+ uses: docker/setup-buildx-action@v3
103
+
104
+ - name: Login to Docker Hub
105
+ uses: docker/login-action@v3
106
+ with:
107
+ username: ${{ secrets.DOCKERHUB_USERNAME }}
108
+ password: ${{ secrets.DOCKERHUB_TOKEN }}
109
+
110
+ - name: Retrieve Ultralytics version
111
+ id: get_version
112
+ run: |
113
+ VERSION=$(grep "^__version__ =" ultralytics/__init__.py | awk -F'"' '{print $2}')
114
+ echo "Retrieved Ultralytics version: $VERSION"
115
+ echo "version=$VERSION" >> $GITHUB_OUTPUT
116
+ VERSION_TAG=$(echo "${{ matrix.tags }}" | sed "s/latest/${VERSION}/")
117
+ echo "Intended version tag: $VERSION_TAG"
118
+ echo "version_tag=$VERSION_TAG" >> $GITHUB_OUTPUT
119
+
120
+ - name: Check if version tag exists on DockerHub
121
+ id: check_tag
122
+ run: |
123
+ RESPONSE=$(curl -s https://hub.docker.com/v2/repositories/ultralytics/ultralytics/tags/$VERSION_TAG)
124
+ MESSAGE=$(echo $RESPONSE | jq -r '.message')
125
+ if [[ "$MESSAGE" == "null" ]]; then
126
+ echo "Tag $VERSION_TAG already exists on DockerHub."
127
+ echo "new_release=false" >> $GITHUB_OUTPUT
128
+ elif [[ "$MESSAGE" == *"404"* ]]; then
129
+ echo "Tag $VERSION_TAG does not exist on DockerHub."
130
+ echo "new_release=true" >> $GITHUB_OUTPUT
131
+ else
132
+ echo "Unexpected response from DockerHub. Please check manually."
133
+ echo "new_release=false" >> $GITHUB_OUTPUT
134
+ fi
135
+ env:
136
+ VERSION_TAG: ${{ steps.get_version.outputs.version_tag }}
137
+
138
+ - name: Build Image
139
+ if: github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true'
140
+ uses: nick-invision/retry@v3
141
+ with:
142
+ timeout_minutes: 120
143
+ retry_wait_seconds: 60
144
+ max_attempts: 3 # retry twice
145
+ command: |
146
+ docker build \
147
+ --platform ${{ matrix.platforms }} \
148
+ -f docker/${{ matrix.dockerfile }} \
149
+ -t ultralytics/ultralytics:${{ matrix.tags }} \
150
+ -t ultralytics/ultralytics:${{ steps.get_version.outputs.version_tag }} \
151
+ .
152
+
153
+ - name: Run Tests
154
+ if: (github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true') && matrix.platforms == 'linux/amd64' && matrix.dockerfile != 'Dockerfile-conda' # arm64 images not supported on GitHub CI runners
155
+ run: docker run ultralytics/ultralytics:${{ matrix.tags }} /bin/bash -c "pip install pytest && pytest tests"
156
+
157
+ - name: Run Benchmarks
158
+ # WARNING: Dockerfile (GPU) error on TF.js export 'module 'numpy' has no attribute 'object'.
159
+ if: (github.event_name == 'push' || github.event.inputs[matrix.dockerfile] == 'true') && matrix.platforms == 'linux/amd64' && matrix.dockerfile != 'Dockerfile' && matrix.dockerfile != 'Dockerfile-conda' # arm64 images not supported on GitHub CI runners
160
+ run: docker run ultralytics/ultralytics:${{ matrix.tags }} yolo benchmark model=yolo11n.pt imgsz=160 verbose=0.309
161
+
162
+ - name: Push Docker Image with Ultralytics version tag
163
+ if: (github.event_name == 'push' || (github.event.inputs[matrix.dockerfile] == 'true' && github.event.inputs.push == 'true')) && steps.check_tag.outputs.new_release == 'true' && matrix.dockerfile != 'Dockerfile-conda'
164
+ run: |
165
+ docker push ultralytics/ultralytics:${{ steps.get_version.outputs.version_tag }}
166
+
167
+ - name: Push Docker Image with latest tag
168
+ if: github.event_name == 'push' || (github.event.inputs[matrix.dockerfile] == 'true' && github.event.inputs.push == 'true')
169
+ run: |
170
+ docker push ultralytics/ultralytics:${{ matrix.tags }}
171
+ if [[ "${{ matrix.tags }}" == "latest" ]]; then
172
+ t=ultralytics/ultralytics:latest-runner
173
+ docker build -f docker/Dockerfile-runner -t $t .
174
+ docker push $t
175
+ fi
176
+
177
+ trigger-actions:
178
+ runs-on: ubuntu-latest
179
+ needs: docker
180
+ # Only trigger actions on new Ultralytics releases
181
+ if: success() && github.repository == 'ultralytics/ultralytics' && github.event_name == 'push' && needs.docker.outputs.new_release == 'true'
182
+ steps:
183
+ - name: Trigger Additional GitHub Actions
184
+ env:
185
+ GH_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN }}
186
+ run: |
187
+ gh workflow run deploy_cloud_run.yml \
188
+ --repo ultralytics/assistant \
189
+ --ref main
190
+
191
+ notify:
192
+ runs-on: ubuntu-latest
193
+ needs: [docker, trigger-actions]
194
+ if: always()
195
+ steps:
196
+ - name: Check for failure and notify
197
+ if: needs.docker.result == 'failure' && github.repository == 'ultralytics/ultralytics' && github.event_name == 'push'
198
+ uses: slackapi/[email protected]
199
+ with:
200
+ payload: |
201
+ {"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n"}
202
+ env:
203
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
.github/workflows/docs.yml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Test and publish docs to https://docs.ultralytics.com
3
+ # Ignores the following Docs rules to match Google-style docstrings:
4
+ # D100: Missing docstring in public module
5
+ # D104: Missing docstring in public package
6
+ # D203: 1 blank line required before class docstring
7
+ # D205: 1 blank line required between summary line and description
8
+ # D212: Multi-line docstring summary should start at the first line
9
+ # D213: Multi-line docstring summary should start at the second line
10
+ # D401: First line of docstring should be in imperative mood
11
+ # D406: Section name should end with a newline
12
+ # D407: Missing dashed underline after section
13
+ # D413: Missing blank line after last section
14
+
15
+ name: Publish Docs
16
+
17
+ on:
18
+ push:
19
+ branches: [main]
20
+ pull_request:
21
+ branches: [main]
22
+ workflow_dispatch:
23
+
24
+ jobs:
25
+ Docs:
26
+ if: github.repository == 'ultralytics/ultralytics'
27
+ runs-on: macos-14
28
+ steps:
29
+ - name: Git config
30
+ run: |
31
+ git config --global user.name "UltralyticsAssistant"
32
+ git config --global user.email "[email protected]"
33
+ - name: Checkout Repository
34
+ uses: actions/checkout@v4
35
+ with:
36
+ repository: ${{ github.event.pull_request.head.repo.full_name || github.repository }}
37
+ token: ${{ secrets.PERSONAL_ACCESS_TOKEN || secrets.GITHUB_TOKEN }}
38
+ ref: ${{ github.head_ref || github.ref }}
39
+ fetch-depth: 0
40
+ - name: Set up Python
41
+ uses: actions/setup-python@v5
42
+ with:
43
+ python-version: "3.x"
44
+ cache: "pip" # caching pip dependencies
45
+ - name: Install Dependencies
46
+ run: pip install ruff black tqdm mkdocs-material "mkdocstrings[python]" mkdocs-jupyter mkdocs-redirects mkdocs-ultralytics-plugin mkdocs-macros-plugin
47
+ - name: Ruff fixes
48
+ continue-on-error: true
49
+ run: ruff check --fix --unsafe-fixes --select D --ignore=D100,D104,D203,D205,D212,D213,D401,D406,D407,D413 .
50
+ - name: Update Docs Reference Section and Push Changes
51
+ continue-on-error: true
52
+ run: |
53
+ python docs/build_reference.py
54
+ git pull origin ${{ github.head_ref || github.ref }}
55
+ git add .
56
+ git reset HEAD -- .github/workflows/ # workflow changes are not permitted with default token
57
+ if ! git diff --staged --quiet; then
58
+ git commit -m "Auto-update Ultralytics Docs Reference by https://ultralytics.com/actions"
59
+ git push
60
+ else
61
+ echo "No changes to commit"
62
+ fi
63
+ - name: Ruff checks
64
+ run: ruff check --select D --ignore=D100,D104,D203,D205,D212,D213,D401,D406,D407,D413 .
65
+ - name: Build Docs and Check for Warnings
66
+ run: |
67
+ export JUPYTER_PLATFORM_DIRS=1
68
+ python docs/build_docs.py
69
+ - name: Commit and Push Docs changes
70
+ continue-on-error: true
71
+ if: always()
72
+ run: |
73
+ git pull origin ${{ github.head_ref || github.ref }}
74
+ git add --update # only add updated files
75
+ git reset HEAD -- .github/workflows/ # workflow changes are not permitted with default token
76
+ if ! git diff --staged --quiet; then
77
+ git commit -m "Auto-update Ultralytics Docs by https://ultralytics.com/actions"
78
+ git push
79
+ else
80
+ echo "No changes to commit"
81
+ fi
82
+ - name: Publish Docs to https://docs.ultralytics.com
83
+ if: github.event_name == 'push'
84
+ run: |
85
+ git clone https://github.com/ultralytics/docs.git docs-repo
86
+ cd docs-repo
87
+ git checkout gh-pages || git checkout -b gh-pages
88
+ rm -rf *
89
+ cp -R ../site/* .
90
+ echo "${{ secrets.INDEXNOW_KEY_DOCS }}" > "${{ secrets.INDEXNOW_KEY_DOCS }}.txt"
91
+ git add .
92
+ if git diff --staged --quiet; then
93
+ echo "No changes to commit"
94
+ else
95
+ LATEST_HASH=$(git rev-parse --short=7 HEAD)
96
+ git commit -m "Update Docs for 'ultralytics ${{ steps.check_pypi.outputs.version }} - $LATEST_HASH'"
97
+ git push https://${{ secrets.PERSONAL_ACCESS_TOKEN }}@github.com/ultralytics/docs.git gh-pages
98
+ fi
.github/workflows/format.yml ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics 🚀 - AGPL-3.0 License https://ultralytics.com/license
2
+ # Ultralytics Actions https://github.com/ultralytics/actions
3
+ # This workflow automatically formats code and documentation in PRs to official Ultralytics standards
4
+
5
+ name: Ultralytics Actions
6
+
7
+ on:
8
+ issues:
9
+ types: [opened, edited]
10
+ discussion:
11
+ types: [created]
12
+ pull_request_target:
13
+ branches: [main]
14
+ types: [opened, closed, synchronize, review_requested]
15
+
16
+ jobs:
17
+ format:
18
+ runs-on: macos-14
19
+ steps:
20
+ - name: Run Ultralytics Formatting
21
+ uses: ultralytics/actions@main
22
+ with:
23
+ token: ${{ secrets.PERSONAL_ACCESS_TOKEN || secrets.GITHUB_TOKEN }} # note GITHUB_TOKEN automatically generated
24
+ labels: true # autolabel issues and PRs
25
+ python: true # format Python code and docstrings
26
+ prettier: true # format YAML, JSON, Markdown and CSS
27
+ spelling: true # check spelling
28
+ links: false # check broken links
29
+ summary: true # print PR summary with GPT4o (requires 'openai_api_key')
30
+ openai_azure_api_key: ${{ secrets.OPENAI_AZURE_API_KEY }}
31
+ openai_azure_endpoint: ${{ secrets.OPENAI_AZURE_ENDPOINT }}
32
+ first_issue_response: |
33
+ 👋 Hello @${{ github.actor }}, thank you for your interest in Ultralytics 🚀! We recommend a visit to the [Docs](https://docs.ultralytics.com) for new users where you can find many [Python](https://docs.ultralytics.com/usage/python/) and [CLI](https://docs.ultralytics.com/usage/cli/) usage examples and where many of the most common questions may already be answered.
34
+
35
+ If this is a 🐛 Bug Report, please provide a [minimum reproducible example](https://docs.ultralytics.com/help/minimum_reproducible_example/) to help us debug it.
36
+
37
+ If this is a custom training ❓ Question, please provide as much information as possible, including dataset image examples and training logs, and verify you are following our [Tips for Best Training Results](https://docs.ultralytics.com/guides/model-training-tips/).
38
+
39
+ Join the Ultralytics community where it suits you best. For real-time chat, head to [Discord](https://ultralytics.com/discord) 🎧. Prefer in-depth discussions? Check out [Discourse](https://community.ultralytics.com). Or dive into threads on our [Subreddit](https://reddit.com/r/ultralytics) to share knowledge with the community.
40
+
41
+ ## Upgrade
42
+
43
+ Upgrade to the latest `ultralytics` package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) to verify your issue is not already resolved in the latest version:
44
+
45
+ ```bash
46
+ pip install -U ultralytics
47
+ ```
48
+
49
+ ## Environments
50
+
51
+ YOLO may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
52
+
53
+ - **Notebooks** with free GPU: <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a> <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
54
+ - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
55
+ - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
56
+ - **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
57
+
58
+ ## Status
59
+
60
+ <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
61
+
62
+ If this badge is green, all [Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml?query=event%3Aschedule) tests are currently passing. CI tests verify correct operation of all YOLO [Modes](https://docs.ultralytics.com/modes/) and [Tasks](https://docs.ultralytics.com/tasks/) on macOS, Windows, and Ubuntu every 24 hours and on every commit.
.github/workflows/links.yml ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Continuous Integration (CI) GitHub Actions tests broken link checker using https://github.com/lycheeverse/lychee
3
+ # Ignores the following status codes to reduce false positives:
4
+ # - 401(Vimeo, 'unauthorized')
5
+ # - 403(OpenVINO, 'forbidden')
6
+ # - 429(Instagram, 'too many requests')
7
+ # - 500(Zenodo, 'cached')
8
+ # - 502(Zenodo, 'bad gateway')
9
+ # - 999(LinkedIn, 'unknown status code')
10
+
11
+ name: Check Broken links
12
+
13
+ on:
14
+ workflow_dispatch:
15
+ schedule:
16
+ - cron: "0 0 * * *" # runs at 00:00 UTC every day
17
+
18
+ jobs:
19
+ Links:
20
+ runs-on: ubuntu-latest
21
+ steps:
22
+ - uses: actions/checkout@v4
23
+
24
+ - name: Download and install lychee
25
+ run: |
26
+ LYCHEE_URL=$(curl -s https://api.github.com/repos/lycheeverse/lychee/releases/latest | grep "browser_download_url" | grep "x86_64-unknown-linux-gnu.tar.gz" | cut -d '"' -f 4)
27
+ curl -L $LYCHEE_URL -o lychee.tar.gz
28
+ tar xzf lychee.tar.gz
29
+ sudo mv lychee /usr/local/bin
30
+
31
+ - name: Test Markdown and HTML links with retry
32
+ uses: nick-invision/retry@v3
33
+ with:
34
+ timeout_minutes: 5
35
+ retry_wait_seconds: 60
36
+ max_attempts: 3
37
+ command: |
38
+ lychee \
39
+ --scheme https \
40
+ --timeout 60 \
41
+ --insecure \
42
+ --accept 401,403,429,500,502,999 \
43
+ --exclude-all-private \
44
+ --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
45
+ --exclude-path docs/zh \
46
+ --exclude-path docs/es \
47
+ --exclude-path docs/ru \
48
+ --exclude-path docs/pt \
49
+ --exclude-path docs/fr \
50
+ --exclude-path docs/de \
51
+ --exclude-path docs/ja \
52
+ --exclude-path docs/ko \
53
+ --exclude-path docs/hi \
54
+ --exclude-path docs/ar \
55
+ --github-token ${{ secrets.GITHUB_TOKEN }} \
56
+ --header "User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
57
+ './**/*.md' \
58
+ './**/*.html'
59
+
60
+ - name: Test Markdown, HTML, YAML, Python and Notebook links with retry
61
+ if: github.event_name == 'workflow_dispatch'
62
+ uses: nick-invision/retry@v3
63
+ with:
64
+ timeout_minutes: 5
65
+ retry_wait_seconds: 60
66
+ max_attempts: 3
67
+ command: |
68
+ lychee \
69
+ --scheme https \
70
+ --timeout 60 \
71
+ --insecure \
72
+ --accept 401,403,429,500,502,999 \
73
+ --exclude-all-private \
74
+ --exclude 'https?://(www\.)?(linkedin\.com|twitter\.com|instagram\.com|kaggle\.com|fonts\.gstatic\.com|url\.com)' \
75
+ --exclude-path '**/ci.yaml' \
76
+ --exclude-path docs/zh \
77
+ --exclude-path docs/es \
78
+ --exclude-path docs/ru \
79
+ --exclude-path docs/pt \
80
+ --exclude-path docs/fr \
81
+ --exclude-path docs/de \
82
+ --exclude-path docs/ja \
83
+ --exclude-path docs/ko \
84
+ --exclude-path docs/hi \
85
+ --exclude-path docs/ar \
86
+ --github-token ${{ secrets.GITHUB_TOKEN }} \
87
+ --header "User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.6478.183 Safari/537.36" \
88
+ './**/*.md' \
89
+ './**/*.html' \
90
+ './**/*.yml' \
91
+ './**/*.yaml' \
92
+ './**/*.py' \
93
+ './**/*.ipynb'
.github/workflows/merge-main-into-prs.yml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Automatically merges repository 'main' branch into all open PRs to keep them up-to-date
3
+ # Action runs on updates to main branch so when one PR merges to main all others update
4
+
5
+ name: Merge main into PRs
6
+
7
+ on:
8
+ workflow_dispatch:
9
+ # push:
10
+ # branches:
11
+ # - ${{ github.event.repository.default_branch }}
12
+
13
+ jobs:
14
+ Merge:
15
+ if: github.repository == 'ultralytics/ultralytics'
16
+ runs-on: ubuntu-latest
17
+ steps:
18
+ - name: Checkout repository
19
+ uses: actions/checkout@v4
20
+ with:
21
+ fetch-depth: 0
22
+ - uses: actions/setup-python@v5
23
+ with:
24
+ python-version: "3.x"
25
+ cache: "pip"
26
+ - name: Install requirements
27
+ run: |
28
+ pip install pygithub
29
+ - name: Merge default branch into PRs
30
+ shell: python
31
+ run: |
32
+ from github import Github
33
+ import os
34
+ import time
35
+
36
+ g = Github("${{ secrets.PERSONAL_ACCESS_TOKEN }}")
37
+ repo = g.get_repo("${{ github.repository }}")
38
+
39
+ # Fetch the default branch name
40
+ default_branch_name = repo.default_branch
41
+ default_branch = repo.get_branch(default_branch_name)
42
+
43
+ # Initialize counters
44
+ updated_branches = 0
45
+ up_to_date_branches = 0
46
+ errors = 0
47
+
48
+ for pr in repo.get_pulls(state='open', sort='created'):
49
+ try:
50
+ # Label PRs as popular for positive reactions
51
+ reactions = pr.as_issue().get_reactions()
52
+ if sum([(1 if r.content not in {"-1", "confused"} else 0) for r in reactions]) > 5:
53
+ pr.set_labels(*("popular",) + tuple(l.name for l in pr.get_labels()))
54
+
55
+ # Get full names for repositories and branches
56
+ base_repo_name = repo.full_name
57
+ head_repo_name = pr.head.repo.full_name
58
+ base_branch_name = pr.base.ref
59
+ head_branch_name = pr.head.ref
60
+
61
+ # Check if PR is behind the default branch
62
+ comparison = repo.compare(default_branch.commit.sha, pr.head.sha)
63
+ if comparison.behind_by > 0:
64
+ print(f"⚠️ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is behind {default_branch_name} by {comparison.behind_by} commit(s).")
65
+
66
+ # Attempt to update the branch
67
+ try:
68
+ success = pr.update_branch()
69
+ assert success, "Branch update failed"
70
+ print(f"✅ Successfully merged '{default_branch_name}' into PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}).")
71
+ updated_branches += 1
72
+ time.sleep(10) # rate limit merges
73
+ except Exception as update_error:
74
+ print(f"❌ Could not update PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}): {update_error}")
75
+ errors += 1
76
+ else:
77
+ print(f"✅ PR #{pr.number} ({head_repo_name}:{head_branch_name} -> {base_repo_name}:{base_branch_name}) is already up to date with {default_branch_name}, no merge required.")
78
+ up_to_date_branches += 1
79
+ except Exception as e:
80
+ print(f"❌ Could not process PR #{pr.number}: {e}")
81
+ errors += 1
82
+
83
+ # Print summary
84
+ print("\n\nSummary:")
85
+ print(f"Branches updated: {updated_branches}")
86
+ print(f"Branches already up-to-date: {up_to_date_branches}")
87
+ print(f"Total errors: {errors}")
.github/workflows/publish.yml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Publish pip package to PyPI https://pypi.org/project/ultralytics/
3
+
4
+ name: Publish to PyPI
5
+
6
+ on:
7
+ push:
8
+ branches: [main]
9
+ workflow_dispatch:
10
+ inputs:
11
+ pypi:
12
+ type: boolean
13
+ description: Publish to PyPI
14
+
15
+ jobs:
16
+ publish:
17
+ if: github.repository == 'ultralytics/ultralytics' && github.actor == 'glenn-jocher'
18
+ name: Publish
19
+ runs-on: ubuntu-latest
20
+ permissions:
21
+ id-token: write # for PyPI trusted publishing
22
+ steps:
23
+ - name: Checkout code
24
+ uses: actions/checkout@v4
25
+ with:
26
+ token: ${{ secrets.PERSONAL_ACCESS_TOKEN || secrets.GITHUB_TOKEN }} # use your PAT here
27
+ - name: Git config
28
+ run: |
29
+ git config --global user.name "UltralyticsAssistant"
30
+ git config --global user.email "[email protected]"
31
+ - name: Set up Python environment
32
+ uses: actions/setup-python@v5
33
+ with:
34
+ python-version: "3.x"
35
+ cache: "pip" # caching pip dependencies
36
+ - name: Install dependencies
37
+ run: |
38
+ python -m pip install --upgrade pip wheel
39
+ pip install requests build twine toml
40
+ - name: Check PyPI version
41
+ shell: python
42
+ run: |
43
+ import os
44
+ import requests
45
+ import toml
46
+
47
+ # Load version and package name from pyproject.toml
48
+ pyproject = toml.load('pyproject.toml')
49
+ package_name = pyproject['project']['name']
50
+ local_version = pyproject['project'].get('version', 'dynamic')
51
+
52
+ # If version is dynamic, extract it from the specified file
53
+ if local_version == 'dynamic':
54
+ version_attr = pyproject['tool']['setuptools']['dynamic']['version']['attr']
55
+ module_path, attr_name = version_attr.rsplit('.', 1)
56
+ with open(f"{module_path.replace('.', '/')}/__init__.py") as f:
57
+ local_version = next(line.split('=')[1].strip().strip("'\"") for line in f if line.startswith(attr_name))
58
+
59
+ print(f"Local Version: {local_version}")
60
+
61
+ # Get online version from PyPI
62
+ response = requests.get(f"https://pypi.org/pypi/{package_name}/json")
63
+ online_version = response.json()['info']['version'] if response.status_code == 200 else None
64
+ print(f"Online Version: {online_version or 'Not Found'}")
65
+
66
+ # Determine if a new version should be published
67
+ publish = False
68
+ if online_version:
69
+ local_ver = tuple(map(int, local_version.split('.')))
70
+ online_ver = tuple(map(int, online_version.split('.')))
71
+ major_diff = local_ver[0] - online_ver[0]
72
+ minor_diff = local_ver[1] - online_ver[1]
73
+ patch_diff = local_ver[2] - online_ver[2]
74
+
75
+ publish = (
76
+ (major_diff == 0 and minor_diff == 0 and 0 < patch_diff <= 2) or
77
+ (major_diff == 0 and minor_diff == 1 and local_ver[2] == 0) or
78
+ (major_diff == 1 and local_ver[1] == 0 and local_ver[2] == 0)
79
+ )
80
+ else:
81
+ publish = True # First release
82
+
83
+ os.system(f'echo "increment={publish}" >> $GITHUB_OUTPUT')
84
+ os.system(f'echo "current_tag=v{local_version}" >> $GITHUB_OUTPUT')
85
+ os.system(f'echo "previous_tag=v{online_version}" >> $GITHUB_OUTPUT')
86
+
87
+ if publish:
88
+ print('Ready to publish new version to PyPI ✅.')
89
+ id: check_pypi
90
+ - name: Build package
91
+ if: (github.event_name == 'push' || github.event.inputs.pypi == 'true') && steps.check_pypi.outputs.increment == 'True'
92
+ run: python -m build
93
+ - name: Publish to PyPI
94
+ continue-on-error: true
95
+ if: (github.event_name == 'push' || github.event.inputs.pypi == 'true') && steps.check_pypi.outputs.increment == 'True'
96
+ uses: pypa/gh-action-pypi-publish@release/v1
97
+ - name: Publish new tag
98
+ if: (github.event_name == 'push' || github.event.inputs.pypi == 'true') && steps.check_pypi.outputs.increment == 'True'
99
+ run: |
100
+ git tag -a "${{ steps.check_pypi.outputs.current_tag }}" -m "$(git log -1 --pretty=%B)" # i.e. "v0.1.2 commit message"
101
+ git push origin "${{ steps.check_pypi.outputs.current_tag }}"
102
+ - name: Publish new release
103
+ if: (github.event_name == 'push' || github.event.inputs.pypi == 'true') && steps.check_pypi.outputs.increment == 'True'
104
+ env:
105
+ OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
106
+ GITHUB_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN || secrets.GITHUB_TOKEN }}
107
+ CURRENT_TAG: ${{ steps.check_pypi.outputs.current_tag }}
108
+ PREVIOUS_TAG: ${{ steps.check_pypi.outputs.previous_tag }}
109
+ run: |
110
+ curl -s "https://raw.githubusercontent.com/ultralytics/actions/main/utils/summarize_release.py" | python -
111
+ shell: bash
112
+ - name: Extract PR Details
113
+ env:
114
+ GH_TOKEN: ${{ secrets.PERSONAL_ACCESS_TOKEN || secrets.GITHUB_TOKEN }}
115
+ run: |
116
+ # Check if the event is a pull request or pull_request_target
117
+ if [ "${{ github.event_name }}" = "pull_request" ] || [ "${{ github.event_name }}" = "pull_request_target" ]; then
118
+ PR_NUMBER=${{ github.event.pull_request.number }}
119
+ PR_TITLE=$(gh pr view $PR_NUMBER --json title --jq '.title')
120
+ else
121
+ # Use gh to find the PR associated with the commit
122
+ COMMIT_SHA=${{ github.event.after }}
123
+ PR_JSON=$(gh pr list --search "${COMMIT_SHA}" --state merged --json number,title --jq '.[0]')
124
+ PR_NUMBER=$(echo $PR_JSON | jq -r '.number')
125
+ PR_TITLE=$(echo $PR_JSON | jq -r '.title')
126
+ fi
127
+ echo "PR_NUMBER=$PR_NUMBER" >> $GITHUB_ENV
128
+ echo "PR_TITLE=$PR_TITLE" >> $GITHUB_ENV
129
+ - name: Notify on Slack (Success)
130
+ if: success() && github.event_name == 'push' && steps.check_pypi.outputs.increment == 'True'
131
+ uses: slackapi/[email protected]
132
+ with:
133
+ payload: |
134
+ {"text": "<!channel> GitHub Actions success for ${{ github.workflow }} ✅\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* NEW '${{ github.repository }} ${{ steps.check_pypi.outputs.current_tag }}' pip package published 😃\n*Job Status:* ${{ job.status }}\n*Pull Request:* <https://github.com/${{ github.repository }}/pull/${{ env.PR_NUMBER }}> ${{ env.PR_TITLE }}\n"}
135
+ env:
136
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
137
+ - name: Notify on Slack (Failure)
138
+ if: failure()
139
+ uses: slackapi/[email protected]
140
+ with:
141
+ payload: |
142
+ {"text": "<!channel> GitHub Actions error for ${{ github.workflow }} ❌\n\n\n*Repository:* https://github.com/${{ github.repository }}\n*Action:* https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}\n*Author:* ${{ github.actor }}\n*Event:* ${{ github.event_name }}\n*Job Status:* ${{ job.status }}\n*Pull Request:* <https://github.com/${{ github.repository }}/pull/${{ env.PR_NUMBER }}> ${{ env.PR_TITLE }}\n"}
143
+ env:
144
+ SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_YOLO }}
.github/workflows/stale.yml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+
3
+ name: Close stale issues
4
+ on:
5
+ schedule:
6
+ - cron: "0 0 * * *" # Runs at 00:00 UTC every day
7
+
8
+ jobs:
9
+ stale:
10
+ runs-on: ubuntu-latest
11
+ steps:
12
+ - uses: actions/stale@v9
13
+ with:
14
+ repo-token: ${{ secrets.GITHUB_TOKEN }}
15
+
16
+ stale-issue-message: |
17
+ 👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
18
+
19
+ For additional resources and information, please see the links below:
20
+
21
+ - **Docs**: https://docs.ultralytics.com
22
+ - **HUB**: https://hub.ultralytics.com
23
+ - **Community**: https://community.ultralytics.com
24
+
25
+ Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
26
+
27
+ Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
28
+
29
+ stale-pr-message: |
30
+ 👋 Hello there! We wanted to let you know that we've decided to close this pull request due to inactivity. We appreciate the effort you put into contributing to our project, but unfortunately, not all contributions are suitable or aligned with our product roadmap.
31
+
32
+ We hope you understand our decision, and please don't let it discourage you from contributing to open source projects in the future. We value all of our community members and their contributions, and we encourage you to keep exploring new projects and ways to get involved.
33
+
34
+ For additional resources and information, please see the links below:
35
+
36
+ - **Docs**: https://docs.ultralytics.com
37
+ - **HUB**: https://hub.ultralytics.com
38
+ - **Community**: https://community.ultralytics.com
39
+
40
+ Thank you for your contributions to YOLO 🚀 and Vision AI ⭐
41
+
42
+ days-before-issue-stale: 30
43
+ days-before-issue-close: 10
44
+ days-before-pr-stale: 90
45
+ days-before-pr-close: 30
46
+ exempt-issue-labels: "documentation,tutorial,TODO"
47
+ operations-per-run: 300 # The maximum number of operations per run, used to control rate limiting.
.gitignore ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+ requirements.txt
30
+ setup.py
31
+ ultralytics.egg-info
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other info into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ *.py,cover
54
+ .hypothesis/
55
+ .pytest_cache/
56
+ mlruns/
57
+
58
+ # Translations
59
+ *.mo
60
+ *.pot
61
+
62
+ # Django stuff:
63
+ *.log
64
+ local_settings.py
65
+ db.sqlite3
66
+ db.sqlite3-journal
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ target/
80
+
81
+ # Jupyter Notebook
82
+ .ipynb_checkpoints
83
+
84
+ # IPython
85
+ profile_default/
86
+ ipython_config.py
87
+
88
+ # Profiling
89
+ *.pclprof
90
+
91
+ # pyenv
92
+ .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
102
+ __pypackages__/
103
+
104
+ # Celery stuff
105
+ celerybeat-schedule
106
+ celerybeat.pid
107
+
108
+ # SageMath parsed files
109
+ *.sage.py
110
+
111
+ # Environments
112
+ .env
113
+ .venv
114
+ .idea
115
+ env/
116
+ venv/
117
+ ENV/
118
+ env.bak/
119
+ venv.bak/
120
+
121
+ # Spyder project settings
122
+ .spyderproject
123
+ .spyproject
124
+
125
+ # VSCode project settings
126
+ .vscode/
127
+
128
+ # Rope project settings
129
+ .ropeproject
130
+
131
+ # mkdocs documentation
132
+ /site
133
+
134
+ # mypy
135
+ .mypy_cache/
136
+ .dmypy.json
137
+ dmypy.json
138
+
139
+ # Pyre type checker
140
+ .pyre/
141
+
142
+ # datasets and projects (ignore /datasets dir at root only to allow for docs/en/datasets dir)
143
+ /datasets
144
+ runs/
145
+ wandb/
146
+ .DS_Store
147
+
148
+ # Neural Network weights -----------------------------------------------------------------------------------------------
149
+ weights/
150
+ *.weights
151
+ *.pt
152
+ *.pb
153
+ *.onnx
154
+ *.engine
155
+ *.mlmodel
156
+ *.mlpackage
157
+ *.torchscript
158
+ *.tflite
159
+ *.h5
160
+ *_saved_model/
161
+ *_web_model/
162
+ *_openvino_model/
163
+ *_paddle_model/
164
+ *_ncnn_model/
165
+ pnnx*
166
+
167
+ # Autogenerated files for tests
168
+ /ultralytics/assets/
169
+
170
+ # calibration image
171
+ calibration_*.npy
CITATION.cff ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This CITATION.cff file was generated with https://bit.ly/cffinit
2
+
3
+ cff-version: 1.2.0
4
+ title: Ultralytics YOLO
5
+ message: >-
6
+ If you use this software, please cite it using the
7
+ metadata from this file.
8
+ type: software
9
+ authors:
10
+ - given-names: Glenn
11
+ family-names: Jocher
12
+ affiliation: Ultralytics
13
+ orcid: 'https://orcid.org/0000-0001-5950-6979'
14
+ - family-names: Qiu
15
+ given-names: Jing
16
+ affiliation: Ultralytics
17
+ orcid: 'https://orcid.org/0000-0003-3783-7069'
18
+ - given-names: Ayush
19
+ family-names: Chaurasia
20
+ affiliation: Ultralytics
21
+ orcid: 'https://orcid.org/0000-0002-7603-6750'
22
+ repository-code: 'https://github.com/ultralytics/ultralytics'
23
+ url: 'https://ultralytics.com'
24
+ license: AGPL-3.0
25
+ version: 8.0.0
26
+ date-released: '2023-01-10'
CONTRIBUTING.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Learn how to contribute to Ultralytics YOLO open-source repositories. Follow guidelines for pull requests, code of conduct, and bug reporting.
4
+ keywords: Ultralytics, YOLO, open-source, contribution, pull request, code of conduct, bug reporting, GitHub, CLA, Google-style docstrings
5
+ ---
6
+
7
+ # Contributing to Ultralytics Open-Source Projects
8
+
9
+ Welcome! We're thrilled that you're considering contributing to our [Ultralytics](https://www.ultralytics.com/) [open-source](https://github.com/ultralytics) projects. Your involvement not only helps enhance the quality of our repositories but also benefits the entire community. This guide provides clear guidelines and best practices to help you get started.
10
+
11
+ <a href="https://github.com/ultralytics/ultralytics/graphs/contributors">
12
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
13
+
14
+ ## Table of Contents
15
+
16
+ 1. [Code of Conduct](#code-of-conduct)
17
+ 2. [Contributing via Pull Requests](#contributing-via-pull-requests)
18
+ - [CLA Signing](#cla-signing)
19
+ - [Google-Style Docstrings](#google-style-docstrings)
20
+ - [GitHub Actions CI Tests](#github-actions-ci-tests)
21
+ 3. [Reporting Bugs](#reporting-bugs)
22
+ 4. [License](#license)
23
+ 5. [Conclusion](#conclusion)
24
+ 6. [FAQ](#faq)
25
+
26
+ ## Code of Conduct
27
+
28
+ To ensure a welcoming and inclusive environment for everyone, all contributors must adhere to our [Code of Conduct](https://docs.ultralytics.com/help/code_of_conduct/). Respect, kindness, and professionalism are at the heart of our community.
29
+
30
+ ## Contributing via Pull Requests
31
+
32
+ We greatly appreciate contributions in the form of pull requests. To make the review process as smooth as possible, please follow these steps:
33
+
34
+ 1. **[Fork the repository](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo):** Start by forking the Ultralytics YOLO repository to your GitHub account.
35
+
36
+ 2. **[Create a branch](https://docs.github.com/en/desktop/making-changes-in-a-branch/managing-branches-in-github-desktop):** Create a new branch in your forked repository with a clear, descriptive name that reflects your changes.
37
+
38
+ 3. **Make your changes:** Ensure your code adheres to the project's style guidelines and does not introduce any new errors or warnings.
39
+
40
+ 4. **[Test your changes](https://github.com/ultralytics/ultralytics/tree/main/tests):** Before submitting, test your changes locally to confirm they work as expected and don't cause any new issues.
41
+
42
+ 5. **[Commit your changes](https://docs.github.com/en/desktop/making-changes-in-a-branch/committing-and-reviewing-changes-to-your-project-in-github-desktop):** Commit your changes with a concise and descriptive commit message. If your changes address a specific issue, include the issue number in your commit message.
43
+
44
+ 6. **[Create a pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request):** Submit a pull request from your forked repository to the main Ultralytics YOLO repository. Provide a clear and detailed explanation of your changes and how they improve the project.
45
+
46
+ ### CLA Signing
47
+
48
+ Before we can merge your pull request, you must sign our [Contributor License Agreement (CLA)](https://docs.ultralytics.com/help/CLA/). This legal agreement ensures that your contributions are properly licensed, allowing the project to continue being distributed under the AGPL-3.0 license.
49
+
50
+ After submitting your pull request, the CLA bot will guide you through the signing process. To sign the CLA, simply add a comment in your PR stating:
51
+
52
+ ```
53
+ I have read the CLA Document and I sign the CLA
54
+ ```
55
+
56
+ ### Google-Style Docstrings
57
+
58
+ When adding new functions or classes, please include [Google-style docstrings](https://google.github.io/styleguide/pyguide.html). These docstrings provide clear, standardized documentation that helps other developers understand and maintain your code.
59
+
60
+ #### Example
61
+
62
+ This example illustrates a Google-style docstring. Ensure that both input and output `types` are always enclosed in parentheses, e.g., `(bool)`.
63
+
64
+ ```python
65
+ def example_function(arg1, arg2=4):
66
+ """
67
+ Example function demonstrating Google-style docstrings.
68
+
69
+ Args:
70
+ arg1 (int): The first argument.
71
+ arg2 (int): The second argument, with a default value of 4.
72
+
73
+ Returns:
74
+ (bool): True if successful, False otherwise.
75
+
76
+ Examples:
77
+ >>> result = example_function(1, 2) # returns False
78
+ """
79
+ if arg1 == arg2:
80
+ return True
81
+ return False
82
+ ```
83
+
84
+ #### Example with type hints
85
+
86
+ This example includes both a Google-style docstring and type hints for arguments and returns, though using either independently is also acceptable.
87
+
88
+ ```python
89
+ def example_function(arg1: int, arg2: int = 4) -> bool:
90
+ """
91
+ Example function demonstrating Google-style docstrings.
92
+
93
+ Args:
94
+ arg1: The first argument.
95
+ arg2: The second argument, with a default value of 4.
96
+
97
+ Returns:
98
+ True if successful, False otherwise.
99
+
100
+ Examples:
101
+ >>> result = example_function(1, 2) # returns False
102
+ """
103
+ if arg1 == arg2:
104
+ return True
105
+ return False
106
+ ```
107
+
108
+ #### Example Single-line
109
+
110
+ For smaller or simpler functions, a single-line docstring may be sufficient. The docstring must use three double-quotes, be a complete sentence, start with a capital letter, and end with a period.
111
+
112
+ ```python
113
+ def example_small_function(arg1: int, arg2: int = 4) -> bool:
114
+ """Example function with a single-line docstring."""
115
+ return arg1 == arg2
116
+ ```
117
+
118
+ ### GitHub Actions CI Tests
119
+
120
+ All pull requests must pass the GitHub Actions [Continuous Integration](https://docs.ultralytics.com/help/CI/) (CI) tests before they can be merged. These tests include linting, unit tests, and other checks to ensure that your changes meet the project's quality standards. Review the CI output and address any issues that arise.
121
+
122
+ ## Reporting Bugs
123
+
124
+ We highly value bug reports as they help us maintain the quality of our projects. When reporting a bug, please provide a [Minimum Reproducible Example](https://docs.ultralytics.com/help/minimum_reproducible_example/)—a simple, clear code example that consistently reproduces the issue. This allows us to quickly identify and resolve the problem.
125
+
126
+ ## License
127
+
128
+ Ultralytics uses the [GNU Affero General Public License v3.0 (AGPL-3.0)](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) for its repositories. This license promotes openness, transparency, and collaborative improvement in software development. It ensures that all users have the freedom to use, modify, and share the software, fostering a strong community of collaboration and innovation.
129
+
130
+ We encourage all contributors to familiarize themselves with the terms of the AGPL-3.0 license to contribute effectively and ethically to the Ultralytics open-source community.
131
+
132
+ ## Conclusion
133
+
134
+ Thank you for your interest in contributing to [Ultralytics](https://www.ultralytics.com/) [open-source](https://github.com/ultralytics) YOLO projects. Your participation is essential in shaping the future of our software and building a vibrant community of innovation and collaboration. Whether you're enhancing code, reporting bugs, or suggesting new features, your contributions are invaluable.
135
+
136
+ We're excited to see your ideas come to life and appreciate your commitment to advancing object detection technology. Together, let's continue to grow and innovate in this exciting open-source journey. Happy coding! 🚀🌟
137
+
138
+ ## FAQ
139
+
140
+ ### Why should I contribute to Ultralytics YOLO open-source repositories?
141
+
142
+ Contributing to Ultralytics YOLO open-source repositories improves the software, making it more robust and feature-rich for the entire community. Contributions can include code enhancements, bug fixes, documentation improvements, and new feature implementations. Additionally, contributing allows you to collaborate with other skilled developers and experts in the field, enhancing your own skills and reputation. For details on how to get started, refer to the [Contributing via Pull Requests](#contributing-via-pull-requests) section.
143
+
144
+ ### How do I sign the Contributor License Agreement (CLA) for Ultralytics YOLO?
145
+
146
+ To sign the Contributor License Agreement (CLA), follow the instructions provided by the CLA bot after submitting your pull request. This process ensures that your contributions are properly licensed under the AGPL-3.0 license, maintaining the legal integrity of the open-source project. Add a comment in your pull request stating:
147
+
148
+ ```
149
+ I have read the CLA Document and I sign the CLA.
150
+ ```
151
+
152
+ For more information, see the [CLA Signing](#cla-signing) section.
153
+
154
+ ### What are Google-style docstrings, and why are they required for Ultralytics YOLO contributions?
155
+
156
+ Google-style docstrings provide clear, concise documentation for functions and classes, improving code readability and maintainability. These docstrings outline the function's purpose, arguments, and return values with specific formatting rules. When contributing to Ultralytics YOLO, following Google-style docstrings ensures that your additions are well-documented and easily understood. For examples and guidelines, visit the [Google-Style Docstrings](#google-style-docstrings) section.
157
+
158
+ ### How can I ensure my changes pass the GitHub Actions CI tests?
159
+
160
+ Before your pull request can be merged, it must pass all GitHub Actions Continuous Integration (CI) tests. These tests include linting, unit tests, and other checks to ensure the code meets
161
+
162
+ the project's quality standards. Review the CI output and fix any issues. For detailed information on the CI process and troubleshooting tips, see the [GitHub Actions CI Tests](#github-actions-ci-tests) section.
163
+
164
+ ### How do I report a bug in Ultralytics YOLO repositories?
165
+
166
+ To report a bug, provide a clear and concise [Minimum Reproducible Example](https://docs.ultralytics.com/help/minimum_reproducible_example/) along with your bug report. This helps developers quickly identify and fix the issue. Ensure your example is minimal yet sufficient to replicate the problem. For more detailed steps on reporting bugs, refer to the [Reporting Bugs](#reporting-bugs) section.
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published by
637
+ the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
README.md CHANGED
@@ -1,3 +1,278 @@
1
- ---
2
- license: llama3
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p>
3
+ <a href="https://www.ultralytics.com/events/yolovision" target="_blank">
4
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
5
+ </p>
6
+
7
+ [中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar) <br>
8
+
9
+ <div>
10
+ <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
11
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
12
+ <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
13
+ <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
14
+ <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
15
+ <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
16
+ <br>
17
+ <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
18
+ <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
19
+ <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
20
+ </div>
21
+ <br>
22
+
23
+ [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
24
+
25
+ We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://discord.com/invite/ultralytics">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com/">Forums</a>!
26
+
27
+ To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).
28
+
29
+ <img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
30
+
31
+ <div align="center">
32
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
33
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
34
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
35
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
36
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
37
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
38
+ <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
39
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
40
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
41
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
42
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
43
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
44
+ <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
45
+ </div>
46
+ </div>
47
+
48
+ ## <div align="center">Documentation</div>
49
+
50
+ See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.
51
+
52
+ <details open>
53
+ <summary>Install</summary>
54
+
55
+ Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
56
+
57
+ [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
58
+
59
+ ```bash
60
+ pip install ultralytics
61
+ ```
62
+
63
+ For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).
64
+
65
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
66
+
67
+ </details>
68
+
69
+ <details open>
70
+ <summary>Usage</summary>
71
+
72
+ ### CLI
73
+
74
+ YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:
75
+
76
+ ```bash
77
+ yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
78
+ ```
79
+
80
+ `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.
81
+
82
+ ### Python
83
+
84
+ YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
85
+
86
+ ```python
87
+ from ultralytics import YOLO
88
+
89
+ # Load a model
90
+ model = YOLO("yolo11n.pt")
91
+
92
+ # Train the model
93
+ train_results = model.train(
94
+ data="coco8.yaml", # path to dataset YAML
95
+ epochs=100, # number of training epochs
96
+ imgsz=640, # training image size
97
+ device="cpu", # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
98
+ )
99
+
100
+ # Evaluate model performance on the validation set
101
+ metrics = model.val()
102
+
103
+ # Perform object detection on an image
104
+ results = model("path/to/image.jpg")
105
+ results[0].show()
106
+
107
+ # Export the model to ONNX format
108
+ path = model.export(format="onnx") # return path to exported model
109
+ ```
110
+
111
+ See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.
112
+
113
+ </details>
114
+
115
+ ## <div align="center">Models</div>
116
+
117
+ YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models.
118
+
119
+ <img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
120
+
121
+ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
122
+
123
+ <details open><summary>Detection (COCO)</summary>
124
+
125
+ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
126
+
127
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
128
+ | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
129
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
130
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
131
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
132
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
133
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
134
+
135
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
136
+ - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
137
+
138
+ </details>
139
+
140
+ <details><summary>Segmentation (COCO)</summary>
141
+
142
+ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
143
+
144
+ | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
145
+ | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
146
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
147
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
148
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
149
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
150
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
151
+
152
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
153
+ - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
154
+
155
+ </details>
156
+
157
+ <details><summary>Classification (ImageNet)</summary>
158
+
159
+ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
160
+
161
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
162
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
163
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
164
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
165
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
166
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
167
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
168
+
169
+ - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
170
+ - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
171
+
172
+ </details>
173
+
174
+ <details><summary>Pose (COCO)</summary>
175
+
176
+ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
177
+
178
+ | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
179
+ | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
180
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 |
181
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 |
182
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 |
183
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 |
184
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 |
185
+
186
+ - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
187
+ - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
188
+
189
+ </details>
190
+
191
+ <details><summary>OBB (DOTAv1)</summary>
192
+
193
+ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
194
+
195
+ | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
196
+ | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
197
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
198
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
199
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
200
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
201
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
202
+
203
+ - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
204
+ - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
205
+
206
+ </details>
207
+
208
+ ## <div align="center">Integrations</div>
209
+
210
+ Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.
211
+
212
+ <br>
213
+ <a href="https://www.ultralytics.com/hub" target="_blank">
214
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
215
+ <br>
216
+ <br>
217
+
218
+ <div align="center">
219
+ <a href="https://roboflow.com/?ref=ultralytics">
220
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" alt="Roboflow logo"></a>
221
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
222
+ <a href="https://clear.ml/">
223
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" alt="ClearML logo"></a>
224
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
225
+ <a href="https://bit.ly/yolov8-readme-comet">
226
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
227
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
228
+ <a href="https://bit.ly/yolov5-neuralmagic">
229
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
230
+ </div>
231
+
232
+ | Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
233
+ | :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
234
+ | Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
235
+
236
+ ## <div align="center">Ultralytics HUB</div>
237
+
238
+ Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!
239
+
240
+ <a href="https://www.ultralytics.com/hub" target="_blank">
241
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
242
+
243
+ ## <div align="center">Contribute</div>
244
+
245
+ We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
246
+
247
+ <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
248
+
249
+ <a href="https://github.com/ultralytics/ultralytics/graphs/contributors">
250
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
251
+
252
+ ## <div align="center">License</div>
253
+
254
+ Ultralytics offers two licensing options to accommodate diverse use cases:
255
+
256
+ - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
257
+ - **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://www.ultralytics.com/license).
258
+
259
+ ## <div align="center">Contact</div>
260
+
261
+ For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). Become a member of the Ultralytics [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), or [Forums](https://community.ultralytics.com/) for asking questions, sharing projects, learning discussions, or for help with all things Ultralytics!
262
+
263
+ <br>
264
+ <div align="center">
265
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
266
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
267
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
268
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
269
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
270
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
271
+ <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
272
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
273
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
274
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
275
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
276
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
277
+ <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
278
+ </div>
README.zh-CN.md ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p>
3
+ <a href="https://www.ultralytics.com/events/yolovision" target="_blank">
4
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
5
+ </p>
6
+
7
+ [中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar) <br>
8
+
9
+ <div>
10
+ <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
11
+ <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
12
+ <a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
13
+ <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
14
+ <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
15
+ <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
16
+ <br>
17
+ <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
18
+ <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
19
+ <a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
20
+ </div>
21
+ <br>
22
+
23
+ [Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) 是一个尖端的、最先进(SOTA)的模型,基于之前 YOLO 版本的成功,并引入了新功能和改进以进一步提升性能和灵活性。YOLO11 被设计得快速、准确且易于使用,是进行广泛对象检测和跟踪、实例分割、图像分类和姿态估计任务的理想选择。
24
+
25
+ 我们希望这里的资源能帮助你充分利用 YOLO。请浏览 Ultralytics <a href="https://docs.ultralytics.com/">文档</a> 以获取详细信息,在 <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> 上提出问题或讨论,成为 Ultralytics <a href="https://discord.com/invite/ultralytics">Discord</a>、<a href="https://reddit.com/r/ultralytics">Reddit</a> 和 <a href="https://community.ultralytics.com/">论坛</a> 的成员!
26
+
27
+ 想申请企业许可证,请完成 [Ultralytics Licensing](https://www.ultralytics.com/license) 上的表单。
28
+
29
+ <img width="100%" src="https://github.com/user-attachments/assets/a311a4ed-bbf2-43b5-8012-5f183a28a845" alt="YOLO11 performance plots"></a>
30
+
31
+ <div align="center">
32
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
33
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
34
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
35
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
36
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
37
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
38
+ <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
39
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
40
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
41
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
42
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
43
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
44
+ <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
45
+ </div>
46
+ </div>
47
+
48
+ ## <div align="center">文档</div>
49
+
50
+ 请参阅下方的快速开始安装和使用示例,并查看我们的 [文档](https://docs.ultralytics.com/) 以获取有关训练、验证、预测和部署的完整文档。
51
+
52
+ <details open>
53
+ <summary>安装</summary>
54
+
55
+ 在 [**Python>=3.8**](https://www.python.org/) 环境中使用 [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/) 通过 pip 安装包含所有[依赖项](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) 的 ultralytics 包。
56
+
57
+ [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
58
+
59
+ ```bash
60
+ pip install ultralytics
61
+ ```
62
+
63
+ 有关其他安装方法,包括 [Conda](https://anaconda.org/conda-forge/ultralytics)、[Docker](https://hub.docker.com/r/ultralytics/ultralytics) 和 Git,请参阅 [快速开始指南](https://docs.ultralytics.com/quickstart/)。
64
+
65
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
66
+
67
+ </details>
68
+
69
+ <details open>
70
+ <summary>使用</summary>
71
+
72
+ ### CLI
73
+
74
+ YOLO 可以直接在命令行接口(CLI)中使用 `yolo` 命令:
75
+
76
+ ```bash
77
+ yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
78
+ ```
79
+
80
+ `yolo` 可以用于各种任务和模式,并接受额外参数,例如 `imgsz=640`。请参阅 YOLO [CLI 文档](https://docs.ultralytics.com/usage/cli/) 以获取示例。
81
+
82
+ ### Python
83
+
84
+ YOLO 也可以直接在 Python 环境中使用,并接受与上述 CLI 示例中相同的[参数](https://docs.ultralytics.com/usage/cfg/):
85
+
86
+ ```python
87
+ from ultralytics import YOLO
88
+
89
+ # 加载模型
90
+ model = YOLO("yolo11n.pt")
91
+
92
+ # 训练模型
93
+ train_results = model.train(
94
+ data="coco8.yaml", # 数据集 YAML 路径
95
+ epochs=100, # 训练轮次
96
+ imgsz=640, # 训练图像尺寸
97
+ device="cpu", # 运行设备,例如 device=0 或 device=0,1,2,3 或 device=cpu
98
+ )
99
+
100
+ # 评估模型在验证集上的性能
101
+ metrics = model.val()
102
+
103
+ # 在图像上执行对象检测
104
+ results = model("path/to/image.jpg")
105
+ results[0].show()
106
+
107
+ # 将模型导出为 ONNX 格式
108
+ path = model.export(format="onnx") # 返回导出模型的路径
109
+ ```
110
+
111
+ 请参阅 YOLO [Python 文档](https://docs.ultralytics.com/usage/python/) 以获取更多示例。
112
+
113
+ </details>
114
+
115
+ ## <div align="center">模型</div>
116
+
117
+ YOLO11 [检测](https://docs.ultralytics.com/tasks/detect/)、[分割](https://docs.ultralytics.com/tasks/segment/) 和 [姿态](https://docs.ultralytics.com/tasks/pose/) 模型在 [COCO](https://docs.ultralytics.com/datasets/detect/coco/) 数据集上进行预训练,这些模型可在此处获得,此外还有在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 数据集上预训练的 YOLO11 [分类](https://docs.ultralytics.com/tasks/classify/) 模型。所有检测、分割和姿态模型均支持 [跟踪](https://docs.ultralytics.com/modes/track/) 模式。
118
+
119
+ <img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
120
+
121
+ 所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models)在首次使用时自动从最新的 Ultralytics [发布](https://github.com/ultralytics/assets/releases)下载。
122
+
123
+ <details open><summary>检测 (COCO)</summary>
124
+
125
+ 请参阅 [检测文档](https://docs.ultralytics.com/tasks/detect/) 以获取使用这些在 [COCO](https://docs.ultralytics.com/datasets/detect/coco/) 数据集上训练的模型的示例,其中包含 80 个预训练类别。
126
+
127
+ | 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>T4 TensorRT10<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
128
+ | ------------------------------------------------------------------------------------ | ------------------- | -------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
129
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
130
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
131
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
132
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
133
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
134
+
135
+ - **mAP<sup>val</sup>** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。 <br>复制命令 `yolo val detect data=coco.yaml device=0`
136
+ - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。 <br>复制命令 `yolo val detect data=coco.yaml batch=1 device=0|cpu`
137
+
138
+ </details>
139
+
140
+ <details><summary>分割 (COCO)</summary>
141
+
142
+ 请参阅 [分割文档](https://docs.ultralytics.com/tasks/segment/) 以获取使用这些在 [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/) 数据集上训练的模型的示例,其中包含 80 个预训练类别。
143
+
144
+ | 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>T4 TensorRT10<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
145
+ | -------------------------------------------------------------------------------------------- | ------------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
146
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 |
147
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 |
148
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 |
149
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 |
150
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 |
151
+
152
+ - **mAP<sup>val</sup>** 值针对单模型单尺度在 [COCO val2017](https://cocodataset.org/) 数据集上进行。 <br>复制命令 `yolo val segment data=coco-seg.yaml device=0`
153
+ - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。 <br>复制命令 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
154
+
155
+ </details>
156
+
157
+ <details><summary>分类 (ImageNet)</summary>
158
+
159
+ 请参阅 [分类文档](https://docs.ultralytics.com/tasks/classify/) 以获取使用这些在 [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) 数据集上训练的模型的示例,其中包含 1000 个预训练类别。
160
+
161
+ | 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>T4 TensorRT10<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
162
+ | -------------------------------------------------------------------------------------------- | ------------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | ---------------- | ------------------------ |
163
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 3.3 |
164
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 12.1 |
165
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 39.3 |
166
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 49.4 |
167
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 110.4 |
168
+
169
+ - **acc** 值为在 [ImageNet](https://www.image-net.org/) 数据集验证集上的模型准确率。 <br>复制命令 `yolo val classify data=path/to/ImageNet device=0`
170
+ - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 ImageNet 验证图像上平均。 <br>复制命令 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
171
+
172
+ </details>
173
+
174
+ <details><summary>姿态 (COCO)</summary>
175
+
176
+ 请参阅 [姿态文档](https://docs.ultralytics.com/tasks/pose/) 以获取使用这些在 [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/) 数据集上训练的模型的示例,其中包含 1 个预训练类别(人)。
177
+
178
+ | 模型 | 尺寸<br><sup>(像素) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>T4 TensorRT10<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
179
+ | -------------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
180
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 |
181
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 |
182
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 |
183
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 |
184
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 |
185
+
186
+ - **mAP<sup>val</sup>** 值针对单模型单尺度在 [COCO Keypoints val2017](https://cocodataset.org/) 数据集上进行。 <br>复制命令 `yolo val pose data=coco-pose.yaml device=0`
187
+ - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 COCO 验证图像上平均。 <br>复制命令 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
188
+
189
+ </details>
190
+
191
+ <details><summary>OBB (DOTAv1)</summary>
192
+
193
+ 请参阅 [OBB 文档](https://docs.ultralytics.com/tasks/obb/) 以获取使用这些在 [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/) 数据集上训练的模型的示例,其中包含 15 个预训练类别。
194
+
195
+ | 模型 | 尺寸<br><sup>(像素) | mAP<sup>test<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>T4 TensorRT10<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
196
+ | -------------------------------------------------------------------------------------------- | ------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
197
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 | 4.43 ± 0.01 | 2.7 | 17.2 |
198
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 | 5.13 ± 0.02 | 9.7 | 57.5 |
199
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 | 10.07 ± 0.38 | 20.9 | 183.5 |
200
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 | 13.46 ± 0.55 | 26.2 | 232.0 |
201
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 | 28.59 ± 0.96 | 58.8 | 520.2 |
202
+
203
+ - **mAP<sup>test</sup>** 值针对单模型多尺度在 [DOTAv1](https://captain-whu.github.io/DOTA/index.html) 数据集上进行。 <br>复制命令 `yolo val obb data=DOTAv1.yaml device=0 split=test` 并提交合并结果到 [DOTA 评估](https://captain-whu.github.io/DOTA/evaluation.html)。
204
+ - **速度**在使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例的 DOTAv1 验证图像上平均。 <br>复制命令 `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
205
+
206
+ </details>
207
+
208
+ ## <div align="center">集成</div>
209
+
210
+ 我们与领先的 AI 平台的关键集成扩展了 Ultralytics 产品的功能,增强了数据集标记、训练、可视化和模型管理等任务的能力。了解 Ultralytics 如何与 [Roboflow](https://roboflow.com/?ref=ultralytics)、ClearML、[Comet](https://bit.ly/yolov8-readme-comet)、Neural Magic 和 [OpenVINO](https://docs.ultralytics.com/integrations/openvino/) 合作,优化您的 AI 工作流程。
211
+
212
+ <br>
213
+ <a href="https://www.ultralytics.com/hub" target="_blank">
214
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
215
+ <br>
216
+ <br>
217
+
218
+ <div align="center">
219
+ <a href="https://roboflow.com/?ref=ultralytics">
220
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" alt="Roboflow logo"></a>
221
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
222
+ <a href="https://clear.ml/">
223
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" alt="ClearML logo"></a>
224
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
225
+ <a href="https://bit.ly/yolov8-readme-comet">
226
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
227
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
228
+ <a href="https://bit.ly/yolov5-neuralmagic">
229
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
230
+ </div>
231
+
232
+ | Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
233
+ | :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
234
+ | Label and export your custom datasets directly to YOLO11 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLO11 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
235
+
236
+ ## <div align="center">Ultralytics HUB</div>
237
+
238
+ 体验无缝 AI 使用 [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐,一个集数据可视化、YOLO11 🚀 模型训练和部署于一体的解决方案,无需编写代码。利用我们最先进的平台和用户友好的 [Ultralytics 应用](https://www.ultralytics.com/app-install),将图像转换为可操作见解,并轻松实现您的 AI 愿景。免费开始您的旅程!
239
+
240
+ <a href="https://www.ultralytics.com/hub" target="_blank">
241
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
242
+
243
+ ## <div align="center">贡献</div>
244
+
245
+ 我们欢迎您的意见!没有社区的帮助,Ultralytics YOLO 就不可能实现。请参阅我们的 [贡献指南](https://docs.ultralytics.com/help/contributing/) 开始,并填写我们的 [调查问卷](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 向我们提供您体验的反馈。感谢所有贡献者 🙏!
246
+
247
+ <!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
248
+
249
+ <a href="https://github.com/ultralytics/ultralytics/graphs/contributors">
250
+ <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
251
+
252
+ ## <div align="center">许可</div>
253
+
254
+ Ultralytics 提供两种许可选项以适应各种用例:
255
+
256
+ - **AGPL-3.0 许可**:这是一个 [OSI 批准](https://opensource.org/license) 的开源许可,适合学生和爱好者,促进开放协作和知识共享。有关详细信息,请参阅 [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件。
257
+ - **企业许可**:专为商业使用设计,此许可允许将 Ultralytics 软件和 AI 模型无缝集成到商业产品和服务中,无需满足 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品,请通过 [Ultralytics Licensing](https://www.ultralytics.com/license) 联系我们。
258
+
259
+ ## <div align="center">联系</div>
260
+
261
+ 如需 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues)。成为 Ultralytics [Discord](https://discord.com/invite/ultralytics)、[Reddit](https://www.reddit.com/r/ultralytics/) 或 [论坛](https://community.ultralytics.com/) 的成员,提出问题、分享项目、探讨学习讨论,或寻求所有 Ultralytics 相关的帮助!
262
+
263
+ <br>
264
+ <div align="center">
265
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
266
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
267
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
268
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
269
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
270
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
271
+ <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
272
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
273
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
274
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
275
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
276
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
277
+ <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
278
+ </div>
docker/Dockerfile ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CUDA-optimized for YOLO11 single/multi-GPU training and inference
4
+
5
+ # Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
6
+ FROM pytorch/pytorch:2.4.1-cuda12.1-cudnn9-runtime
7
+
8
+ # Set environment variables
9
+ # Avoid DDP error "MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library" https://github.com/pytorch/pytorch/issues/37377
10
+ ENV PYTHONUNBUFFERED=1 \
11
+ PYTHONDONTWRITEBYTECODE=1 \
12
+ PIP_NO_CACHE_DIR=1 \
13
+ PIP_BREAK_SYSTEM_PACKAGES=1 \
14
+ MKL_THREADING_LAYER=GNU \
15
+ OMP_NUM_THREADS=1
16
+
17
+ # Downloads to user config dir
18
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
19
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
20
+ /root/.config/Ultralytics/
21
+
22
+ # Install linux packages
23
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
24
+ # libsm6 required by libqxcb to create QT-based windows for visualization; set 'QT_DEBUG_PLUGINS=1' to test in docker
25
+ RUN apt-get update && \
26
+ apt-get install -y --no-install-recommends \
27
+ gcc git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 libsm6 \
28
+ && rm -rf /var/lib/apt/lists/*
29
+
30
+ # Security updates
31
+ # https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
32
+ RUN apt upgrade --no-install-recommends -y openssl tar
33
+
34
+ # Create working directory
35
+ WORKDIR /ultralytics
36
+
37
+ # Copy contents and configure git
38
+ COPY . .
39
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
40
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
41
+
42
+ # Install pip packages
43
+ RUN python3 -m pip install --upgrade pip wheel
44
+ # Pin TensorRT-cu12==10.1.0 to avoid 10.2.0 bug https://github.com/ultralytics/ultralytics/pull/14239 (note -cu12 must be used)
45
+ RUN pip install -e ".[export]" "tensorrt-cu12==10.1.0" "albumentations>=1.4.6" comet pycocotools
46
+
47
+ # Run exports to AutoInstall packages
48
+ # Edge TPU export fails the first time so is run twice here
49
+ RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32 || yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32
50
+ RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32
51
+ # Requires <= Python 3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
52
+ RUN pip install "paddlepaddle>=2.6.0" x2paddle
53
+ # Fix error: `np.bool` was a deprecated alias for the builtin `bool` segmentation error in Tests
54
+ RUN pip install numpy==1.23.5
55
+
56
+ # Remove extra build files
57
+ RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json
58
+
59
+
60
+ # Usage Examples -------------------------------------------------------------------------------------------------------
61
+
62
+ # Build and Push
63
+ # t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t
64
+
65
+ # Pull and Run with access to all GPUs
66
+ # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
67
+
68
+ # Pull and Run with access to GPUs 2 and 3 (inside container CUDA devices will appear as 0 and 1)
69
+ # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus '"device=2,3"' $t
70
+
71
+ # Pull and Run with local directory access
72
+ # t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/shared/datasets:/datasets $t
73
+
74
+ # Kill all
75
+ # sudo docker kill $(sudo docker ps -q)
76
+
77
+ # Kill all image-based
78
+ # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest)
79
+
80
+ # DockerHub tag update
81
+ # t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
82
+
83
+ # Clean up
84
+ # sudo docker system prune -a --volumes
85
+
86
+ # Update Ubuntu drivers
87
+ # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
88
+
89
+ # DDP test
90
+ # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
91
+
92
+ # GCP VM from Image
93
+ # docker.io/ultralytics/ultralytics:latest
docker/Dockerfile-arm64 ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is aarch64-compatible for Apple M1, M2, M3, Raspberry Pi and other ARM architectures
4
+
5
+ # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu with "FROM arm64v8/ubuntu:22.04" (deprecated)
6
+ # Start FROM Debian image for arm64v8 https://hub.docker.com/r/arm64v8/debian (new)
7
+ FROM arm64v8/debian:bookworm-slim
8
+
9
+ # Set environment variables
10
+ ENV PYTHONUNBUFFERED=1 \
11
+ PYTHONDONTWRITEBYTECODE=1 \
12
+ PIP_NO_CACHE_DIR=1 \
13
+ PIP_BREAK_SYSTEM_PACKAGES=1
14
+
15
+ # Downloads to user config dir
16
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
17
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
18
+ /root/.config/Ultralytics/
19
+
20
+ # Install linux packages
21
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
22
+ # pkg-config and libhdf5-dev (not included) are needed to build 'h5py==3.11.0' aarch64 wheel required by 'tensorflow'
23
+ RUN apt-get update && \
24
+ apt-get install -y --no-install-recommends \
25
+ python3-pip git zip unzip wget curl htop gcc libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
26
+ && rm -rf /var/lib/apt/lists/*
27
+
28
+ # Create working directory
29
+ WORKDIR /ultralytics
30
+
31
+ # Copy contents and configure git
32
+ COPY . .
33
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
34
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
35
+
36
+ # Install pip packages
37
+ RUN python3 -m pip install --upgrade pip wheel
38
+ RUN pip install -e ".[export]"
39
+
40
+ # Creates a symbolic link to make 'python' point to 'python3'
41
+ RUN ln -sf /usr/bin/python3 /usr/bin/python
42
+
43
+ # Remove extra build files
44
+ RUN rm -rf /root/.config/Ultralytics/persistent_cache.json
45
+
46
+ # Usage Examples -------------------------------------------------------------------------------------------------------
47
+
48
+ # Build and Push
49
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-arm64 -t $t . && sudo docker push $t
50
+
51
+ # Run
52
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker run -it --ipc=host $t
53
+
54
+ # Pull and Run
55
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host $t
56
+
57
+ # Pull and Run with local volume mounted
58
+ # t=ultralytics/ultralytics:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
docker/Dockerfile-conda ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-conda image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is optimized for Ultralytics Anaconda (https://anaconda.org/conda-forge/ultralytics) installation and usage
4
+
5
+ # Start FROM miniconda3 image https://hub.docker.com/r/continuumio/miniconda3
6
+ FROM continuumio/miniconda3:latest
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ RUN apt-get update && \
21
+ apt-get install -y --no-install-recommends \
22
+ libgl1 \
23
+ && rm -rf /var/lib/apt/lists/*
24
+
25
+ # Copy contents
26
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
27
+
28
+ # Install conda packages
29
+ # mkl required to fix 'OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory'
30
+ RUN conda config --set solver libmamba && \
31
+ conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia && \
32
+ conda install -c conda-forge ultralytics mkl
33
+ # conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=12.1 ultralytics mkl
34
+
35
+ # Remove extra build files
36
+ RUN rm -rf /root/.config/Ultralytics/persistent_cache.json
37
+
38
+ # Usage Examples -------------------------------------------------------------------------------------------------------
39
+
40
+ # Build and Push
41
+ # t=ultralytics/ultralytics:latest-conda && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t
42
+
43
+ # Run
44
+ # t=ultralytics/ultralytics:latest-conda && sudo docker run -it --ipc=host $t
45
+
46
+ # Pull and Run
47
+ # t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host $t
48
+
49
+ # Pull and Run with local volume mounted
50
+ # t=ultralytics/ultralytics:latest-conda && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
docker/Dockerfile-cpu ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLO11 deployments
4
+
5
+ # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
6
+ FROM ubuntu:23.10
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
21
+ RUN apt-get update && \
22
+ apt-get install -y --no-install-recommends \
23
+ python3-pip git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
24
+ && rm -rf /var/lib/apt/lists/*
25
+
26
+ # Create working directory
27
+ WORKDIR /ultralytics
28
+
29
+ # Copy contents and configure git
30
+ COPY . .
31
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
32
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
33
+
34
+ # Install pip packages
35
+ RUN python3 -m pip install --upgrade pip wheel
36
+ RUN pip install -e ".[export]" --extra-index-url https://download.pytorch.org/whl/cpu
37
+
38
+ # Run exports to AutoInstall packages
39
+ RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32
40
+ RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32
41
+ # Requires Python<=3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
42
+ # RUN pip install "paddlepaddle>=2.6.0" x2paddle
43
+
44
+ # Creates a symbolic link to make 'python' point to 'python3'
45
+ RUN ln -sf /usr/bin/python3 /usr/bin/python
46
+
47
+ # Remove extra build files
48
+ RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json
49
+
50
+ # Usage Examples -------------------------------------------------------------------------------------------------------
51
+
52
+ # Build and Push
53
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t
54
+
55
+ # Run
56
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker run -it --ipc=host --name NAME $t
57
+
58
+ # Pull and Run
59
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host --name NAME $t
60
+
61
+ # Pull and Run with local volume mounted
62
+ # t=ultralytics/ultralytics:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
docker/Dockerfile-jetson-jetpack4 ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:jetson-jetpack4 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Supports JetPack4.x for YOLO11 on Jetson Nano, TX2, Xavier NX, AGX Xavier
4
+
5
+ # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda
6
+ FROM nvcr.io/nvidia/l4t-cuda:10.2.460-runtime
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1
11
+
12
+ # Downloads to user config dir
13
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
14
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
15
+ /root/.config/Ultralytics/
16
+
17
+ # Add NVIDIA repositories for TensorRT dependencies
18
+ RUN wget -q -O - https://repo.download.nvidia.com/jetson/jetson-ota-public.asc | apt-key add - && \
19
+ echo "deb https://repo.download.nvidia.com/jetson/common r32.7 main" > /etc/apt/sources.list.d/nvidia-l4t-apt-source.list && \
20
+ echo "deb https://repo.download.nvidia.com/jetson/t194 r32.7 main" >> /etc/apt/sources.list.d/nvidia-l4t-apt-source.list
21
+
22
+ # Install dependencies
23
+ RUN apt-get update && \
24
+ apt-get install -y --no-install-recommends \
25
+ git python3.8 python3.8-dev python3-pip python3-libnvinfer libopenmpi-dev libopenblas-base libomp-dev gcc \
26
+ && rm -rf /var/lib/apt/lists/*
27
+
28
+ # Create symbolic links for python3.8 and pip3
29
+ RUN ln -sf /usr/bin/python3.8 /usr/bin/python3
30
+ RUN ln -s /usr/bin/pip3 /usr/bin/pip
31
+
32
+ # Create working directory
33
+ WORKDIR /ultralytics
34
+
35
+ # Copy contents and configure git
36
+ COPY . .
37
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
38
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
39
+
40
+ # Download onnxruntime-gpu 1.8.0 and tensorrt 8.2.0.6
41
+ # Other versions can be seen in https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
42
+ ADD https://nvidia.box.com/shared/static/gjqofg7rkg97z3gc8jeyup6t8n9j8xjw.whl onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl
43
+ ADD https://forums.developer.nvidia.com/uploads/short-url/hASzFOm9YsJx6VVFrDW1g44CMmv.whl tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl
44
+
45
+ # Install pip packages
46
+ RUN python3 -m pip install --upgrade pip wheel
47
+ RUN pip install \
48
+ onnxruntime_gpu-1.8.0-cp38-cp38-linux_aarch64.whl \
49
+ tensorrt-8.2.0.6-cp38-none-linux_aarch64.whl \
50
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-1.11.0a0+gitbc2c6ed-cp38-cp38-linux_aarch64.whl \
51
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.12.0a0+9b5a3fe-cp38-cp38-linux_aarch64.whl
52
+ RUN pip install -e ".[export]"
53
+
54
+ # Remove extra build files
55
+ RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
56
+
57
+ # Usage Examples -------------------------------------------------------------------------------------------------------
58
+
59
+ # Build and Push
60
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack4 -t $t . && sudo docker push $t
61
+
62
+ # Run
63
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker run -it --ipc=host $t
64
+
65
+ # Pull and Run
66
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host $t
67
+
68
+ # Pull and Run with NVIDIA runtime
69
+ # t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
docker/Dockerfile-jetson-jetpack5 ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:jetson-jetson-jetpack5 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Supports JetPack5.x for YOLO11 on Jetson Xavier NX, AGX Xavier, AGX Orin, Orin Nano and Orin NX
4
+
5
+ # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-pytorch
6
+ FROM nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ # g++ required to build 'tflite_support' and 'lap' packages
21
+ # libusb-1.0-0 required for 'tflite_support' package when exporting to TFLite
22
+ # pkg-config and libhdf5-dev (not included) are needed to build 'h5py==3.11.0' aarch64 wheel required by 'tensorflow'
23
+ RUN apt-get update && \
24
+ apt-get install -y --no-install-recommends \
25
+ gcc git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
26
+ && rm -rf /var/lib/apt/lists/*
27
+
28
+ # Create working directory
29
+ WORKDIR /ultralytics
30
+
31
+ # Copy contents and configure git
32
+ COPY . .
33
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
34
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
35
+
36
+ # Remove opencv-python from Ultralytics dependencies as it conflicts with opencv-python installed in base image
37
+ RUN sed -i '/opencv-python/d' pyproject.toml
38
+
39
+ # Download onnxruntime-gpu 1.15.1 for Jetson Linux 35.2.1 (JetPack 5.1). Other versions can be seen in https://elinux.org/Jetson_Zoo#ONNX_Runtime
40
+ ADD https://nvidia.box.com/shared/static/mvdcltm9ewdy2d5nurkiqorofz1s53ww.whl onnxruntime_gpu-1.15.1-cp38-cp38-linux_aarch64.whl
41
+
42
+ # Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567
43
+ RUN python3 -m pip install --upgrade pip wheel
44
+ RUN pip install onnxruntime_gpu-1.15.1-cp38-cp38-linux_aarch64.whl
45
+ RUN pip install -e ".[export]"
46
+
47
+ # Remove extra build files
48
+ RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
49
+
50
+ # Usage Examples -------------------------------------------------------------------------------------------------------
51
+
52
+ # Build and Push
53
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack5 -t $t . && sudo docker push $t
54
+
55
+ # Run
56
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker run -it --ipc=host $t
57
+
58
+ # Pull and Run
59
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host $t
60
+
61
+ # Pull and Run with NVIDIA runtime
62
+ # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
docker/Dockerfile-jetson-jetpack6 ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:jetson-jetpack6 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Supports JetPack6.x for YOLO11 on Jetson AGX Orin, Orin NX and Orin Nano Series
4
+
5
+ # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-jetpack
6
+ FROM nvcr.io/nvidia/l4t-jetpack:r36.3.0
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install dependencies
20
+ RUN apt-get update && \
21
+ apt-get install -y --no-install-recommends \
22
+ git python3-pip libopenmpi-dev libopenblas-base libomp-dev \
23
+ && rm -rf /var/lib/apt/lists/*
24
+
25
+ # Create working directory
26
+ WORKDIR /ultralytics
27
+
28
+ # Copy contents and configure git
29
+ COPY . .
30
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
31
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
32
+
33
+ # Download onnxruntime-gpu 1.18.0 from https://elinux.org/Jetson_Zoo and https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048
34
+ ADD https://nvidia.box.com/shared/static/48dtuob7meiw6ebgfsfqakc9vse62sg4.whl onnxruntime_gpu-1.18.0-cp310-cp310-linux_aarch64.whl
35
+
36
+ # Pip install onnxruntime-gpu, torch, torchvision and ultralytics
37
+ RUN python3 -m pip install --upgrade pip wheel
38
+ RUN pip install \
39
+ onnxruntime_gpu-1.18.0-cp310-cp310-linux_aarch64.whl \
40
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torch-2.3.0-cp310-cp310-linux_aarch64.whl \
41
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/torchvision-0.18.0a0+6043bc2-cp310-cp310-linux_aarch64.whl
42
+ RUN pip install -e ".[export]"
43
+
44
+ # Remove extra build files
45
+ RUN rm -rf *.whl /root/.config/Ultralytics/persistent_cache.json
46
+
47
+ # Usage Examples -------------------------------------------------------------------------------------------------------
48
+
49
+ # Build and Push
50
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack6 -t $t . && sudo docker push $t
51
+
52
+ # Run
53
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker run -it --ipc=host $t
54
+
55
+ # Pull and Run
56
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker pull $t && sudo docker run -it --ipc=host $t
57
+
58
+ # Pull and Run with NVIDIA runtime
59
+ # t=ultralytics/ultralytics:latest-jetson-jetpack6 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
docker/Dockerfile-python ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLO11 deployments
4
+
5
+ # Use official Python base image for reproducibility (3.11.10 for export and 3.12.6 for inference)
6
+ FROM python:3.11.10-slim-bookworm
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1
13
+
14
+ # Downloads to user config dir
15
+ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
16
+ https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
17
+ /root/.config/Ultralytics/
18
+
19
+ # Install linux packages
20
+ # g++ required to build 'tflite_support' and 'lap' packages, libusb-1.0-0 required for 'tflite_support' package
21
+ RUN apt-get update && \
22
+ apt-get install -y --no-install-recommends \
23
+ python3-pip git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0 \
24
+ && rm -rf /var/lib/apt/lists/*
25
+
26
+ # Create working directory
27
+ WORKDIR /ultralytics
28
+
29
+ # Copy contents and configure git
30
+ COPY . .
31
+ RUN sed -i '/^\[http "https:\/\/github\.com\/"\]/,+1d' .git/config
32
+ ADD https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt .
33
+
34
+ # Install pip packages
35
+ RUN python3 -m pip install --upgrade pip wheel
36
+ RUN pip install -e ".[export]" --extra-index-url https://download.pytorch.org/whl/cpu
37
+
38
+ # Run exports to AutoInstall packages
39
+ RUN yolo export model=tmp/yolo11n.pt format=edgetpu imgsz=32
40
+ RUN yolo export model=tmp/yolo11n.pt format=ncnn imgsz=32
41
+ # Requires Python<=3.10, bug with paddlepaddle==2.5.0 https://github.com/PaddlePaddle/X2Paddle/issues/991
42
+ RUN pip install "paddlepaddle>=2.6.0" x2paddle
43
+
44
+ # Remove extra build files
45
+ RUN rm -rf tmp /root/.config/Ultralytics/persistent_cache.json
46
+
47
+ # Usage Examples -------------------------------------------------------------------------------------------------------
48
+
49
+ # Build and Push
50
+ # t=ultralytics/ultralytics:latest-python && sudo docker build -f docker/Dockerfile-python -t $t . && sudo docker push $t
51
+
52
+ # Run
53
+ # t=ultralytics/ultralytics:latest-python && sudo docker run -it --ipc=host $t
54
+
55
+ # Pull and Run
56
+ # t=ultralytics/ultralytics:latest-python && sudo docker pull $t && sudo docker run -it --ipc=host $t
57
+
58
+ # Pull and Run with local volume mounted
59
+ # t=ultralytics/ultralytics:latest-python && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/shared/datasets:/datasets $t
docker/Dockerfile-runner ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ # Builds GitHub actions CI runner image for deployment to DockerHub https://hub.docker.com/r/ultralytics/ultralytics
3
+ # Image is CUDA-optimized for YOLO11 single/multi-GPU training and inference tests
4
+
5
+ # Start FROM Ultralytics GPU image
6
+ FROM ultralytics/ultralytics:latest
7
+
8
+ # Set environment variables
9
+ ENV PYTHONUNBUFFERED=1 \
10
+ PYTHONDONTWRITEBYTECODE=1 \
11
+ PIP_NO_CACHE_DIR=1 \
12
+ PIP_BREAK_SYSTEM_PACKAGES=1 \
13
+ RUNNER_ALLOW_RUNASROOT=1 \
14
+ DEBIAN_FRONTEND=noninteractive
15
+
16
+ # Set the working directory
17
+ WORKDIR /actions-runner
18
+
19
+ # Download and unpack the latest runner from https://github.com/actions/runner
20
+ RUN FILENAME=actions-runner-linux-x64-2.317.0.tar.gz && \
21
+ curl -o $FILENAME -L https://github.com/actions/runner/releases/download/v2.317.0/$FILENAME && \
22
+ tar xzf $FILENAME && \
23
+ rm $FILENAME
24
+
25
+ # Install runner dependencies
26
+ RUN pip install pytest-cov
27
+ RUN ./bin/installdependencies.sh && \
28
+ apt-get -y install libicu-dev
29
+
30
+ # Inline ENTRYPOINT command to configure and start runner with default TOKEN and NAME
31
+ ENTRYPOINT sh -c './config.sh --url https://github.com/ultralytics/ultralytics \
32
+ --token ${GITHUB_RUNNER_TOKEN:-TOKEN} \
33
+ --name ${GITHUB_RUNNER_NAME:-NAME} \
34
+ --labels gpu-latest \
35
+ --replace && \
36
+ ./run.sh'
37
+
38
+
39
+ # Usage Examples -------------------------------------------------------------------------------------------------------
40
+
41
+ # Build and Push
42
+ # t=ultralytics/ultralytics:latest-runner && sudo docker build -f docker/Dockerfile-runner -t $t . && sudo docker push $t
43
+
44
+ # Pull and Run in detached mode with access to GPUs 0 and 1
45
+ # t=ultralytics/ultralytics:latest-runner && sudo docker run -d -e GITHUB_RUNNER_TOKEN=TOKEN -e GITHUB_RUNNER_NAME=NAME --ipc=host --gpus '"device=0,1"' $t
docs/README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <br>
2
+ <a href="https://www.ultralytics.com/" target="_blank"><img src="https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg" width="320" alt="Ultralytics logo"></a>
3
+
4
+ # 📚 Ultralytics Docs
5
+
6
+ [Ultralytics](https://www.ultralytics.com/) Docs are the gateway to understanding and utilizing our cutting-edge machine learning tools. These documents are deployed to [https://docs.ultralytics.com](https://docs.ultralytics.com/) for your convenience.
7
+
8
+ [![pages-build-deployment](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/pages/pages-build-deployment)
9
+ [![Check Broken links](https://github.com/ultralytics/docs/actions/workflows/links.yml/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/links.yml)
10
+ [![Check Domains](https://github.com/ultralytics/docs/actions/workflows/check_domains.yml/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/check_domains.yml)
11
+ [![Ultralytics Actions](https://github.com/ultralytics/docs/actions/workflows/format.yml/badge.svg)](https://github.com/ultralytics/docs/actions/workflows/format.yml)
12
+
13
+ <a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
14
+
15
+ ## 🛠️ Installation
16
+
17
+ [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/)
18
+ [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
19
+ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
20
+
21
+ To install the ultralytics package in developer mode, ensure you have Git and Python 3 installed on your system. Then, follow these steps:
22
+
23
+ 1. Clone the ultralytics repository to your local machine using Git:
24
+
25
+ ```bash
26
+ git clone https://github.com/ultralytics/ultralytics.git
27
+ ```
28
+
29
+ 2. Navigate to the cloned repository's root directory:
30
+
31
+ ```bash
32
+ cd ultralytics
33
+ ```
34
+
35
+ 3. Install the package in developer mode using pip (or pip3 for Python 3):
36
+
37
+ ```bash
38
+ pip install -e '.[dev]'
39
+ ```
40
+
41
+ - This command installs the ultralytics package along with all development dependencies, allowing you to modify the package code and have the changes immediately reflected in your Python environment.
42
+
43
+ ## 🚀 Building and Serving Locally
44
+
45
+ The `mkdocs serve` command builds and serves a local version of your MkDocs documentation, ideal for development and testing:
46
+
47
+ ```bash
48
+ mkdocs serve
49
+ ```
50
+
51
+ - #### Command Breakdown:
52
+
53
+ - `mkdocs` is the main MkDocs command-line interface.
54
+ - `serve` is the subcommand to build and locally serve your documentation.
55
+
56
+ - 🧐 Note:
57
+
58
+ - Grasp changes to the docs in real-time as `mkdocs serve` supports live reloading.
59
+ - To stop the local server, press `CTRL+C`.
60
+
61
+ ## 🌍 Building and Serving Multi-Language
62
+
63
+ Supporting multi-language documentation? Follow these steps:
64
+
65
+ 1. Stage all new language \*.md files with Git:
66
+
67
+ ```bash
68
+ git add docs/**/*.md -f
69
+ ```
70
+
71
+ 2. Build all languages to the `/site` folder, ensuring relevant root-level files are present:
72
+
73
+ ```bash
74
+ # Clear existing /site directory
75
+ rm -rf site
76
+
77
+ # Loop through each language config file and build
78
+ mkdocs build -f docs/mkdocs.yml
79
+ for file in docs/mkdocs_*.yml; do
80
+ echo "Building MkDocs site with $file"
81
+ mkdocs build -f "$file"
82
+ done
83
+ ```
84
+
85
+ 3. To preview your site, initiate a simple HTTP server:
86
+
87
+ ```bash
88
+ cd site
89
+ python -m http.server
90
+ # Open in your preferred browser
91
+ ```
92
+
93
+ - 🖥️ Access the live site at `http://localhost:8000`.
94
+
95
+ ## 📤 Deploying Your Documentation Site
96
+
97
+ Choose a hosting provider and deployment method for your MkDocs documentation:
98
+
99
+ - Configure `mkdocs.yml` with deployment settings.
100
+ - Use `mkdocs deploy` to build and deploy your site.
101
+
102
+ * ### GitHub Pages Deployment Example:
103
+
104
+ ```bash
105
+ mkdocs gh-deploy
106
+ ```
107
+
108
+ - Update the "Custom domain" in your repository's settings for a personalized URL.
109
+
110
+ ![MkDocs deployment example](https://github.com/ultralytics/docs/releases/download/0/mkdocs-deployment-example.avif)
111
+
112
+ - For detailed deployment guidance, consult the [MkDocs documentation](https://www.mkdocs.org/user-guide/deploying-your-docs/).
113
+
114
+ ## 💡 Contribute
115
+
116
+ We cherish the community's input as it drives Ultralytics open-source initiatives. Dive into the [Contributing Guide](https://docs.ultralytics.com/help/contributing/) and share your thoughts via our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A heartfelt thank you 🙏 to each contributor!
117
+
118
+ ![Ultralytics open-source contributors](https://github.com/ultralytics/docs/releases/download/0/ultralytics-open-source-contributors.avif)
119
+
120
+ ## 📜 License
121
+
122
+ Ultralytics Docs presents two licensing options:
123
+
124
+ - **AGPL-3.0 License**: Perfect for academia and open collaboration. Details are in the [LICENSE](https://github.com/ultralytics/docs/blob/main/LICENSE) file.
125
+ - **Enterprise License**: Tailored for commercial usage, offering a seamless blend of Ultralytics technology in your products. Learn more at [Ultralytics Licensing](https://www.ultralytics.com/license).
126
+
127
+ ## ✉️ Contact
128
+
129
+ For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). Become a member of the Ultralytics [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), or [Forums](https://community.ultralytics.com/) for asking questions, sharing projects, learning discussions, or for help with all things Ultralytics!
130
+
131
+ <br>
132
+ <div align="center">
133
+ <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
134
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
135
+ <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
136
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
137
+ <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
138
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
139
+ <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
140
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
141
+ <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
142
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
143
+ <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
144
+ <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
145
+ <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
146
+ </div>
docs/build_docs.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Automates the building and post-processing of MkDocs documentation, particularly for projects with multilingual content.
4
+ It streamlines the workflow for generating localized versions of the documentation and updating HTML links to ensure
5
+ they are correctly formatted.
6
+
7
+ Key Features:
8
+ - Automated building of MkDocs documentation: The script compiles both the main documentation and
9
+ any localized versions specified in separate MkDocs configuration files.
10
+ - Post-processing of generated HTML files: After the documentation is built, the script updates all
11
+ HTML files to remove the '.md' extension from internal links. This ensures that links in the built
12
+ HTML documentation correctly point to other HTML pages rather than Markdown files, which is crucial
13
+ for proper navigation within the web-based documentation.
14
+
15
+ Usage:
16
+ - Run the script from the root directory of your MkDocs project.
17
+ - Ensure that MkDocs is installed and that all MkDocs configuration files (main and localized versions)
18
+ are present in the project directory.
19
+ - The script first builds the documentation using MkDocs, then scans the generated HTML files in the 'site'
20
+ directory to update the internal links.
21
+ - It's ideal for projects where the documentation is written in Markdown and needs to be served as a static website.
22
+
23
+ Note:
24
+ - This script is built to be run in an environment where Python and MkDocs are installed and properly configured.
25
+ """
26
+
27
+ import os
28
+ import re
29
+ import shutil
30
+ import subprocess
31
+ from pathlib import Path
32
+
33
+ from bs4 import BeautifulSoup
34
+ from tqdm import tqdm
35
+
36
+ os.environ["JUPYTER_PLATFORM_DIRS"] = "1" # fix DeprecationWarning: Jupyter is migrating to use standard platformdirs
37
+ DOCS = Path(__file__).parent.resolve()
38
+ SITE = DOCS.parent / "site"
39
+
40
+
41
+ def prepare_docs_markdown(clone_repos=True):
42
+ """Build docs using mkdocs."""
43
+ if SITE.exists():
44
+ print(f"Removing existing {SITE}")
45
+ shutil.rmtree(SITE)
46
+
47
+ # Get hub-sdk repo
48
+ if clone_repos:
49
+ repo = "https://github.com/ultralytics/hub-sdk"
50
+ local_dir = DOCS.parent / Path(repo).name
51
+ if not local_dir.exists():
52
+ os.system(f"git clone {repo} {local_dir}")
53
+ os.system(f"git -C {local_dir} pull") # update repo
54
+ shutil.rmtree(DOCS / "en/hub/sdk", ignore_errors=True) # delete if exists
55
+ shutil.copytree(local_dir / "docs", DOCS / "en/hub/sdk") # for docs
56
+ shutil.rmtree(DOCS.parent / "hub_sdk", ignore_errors=True) # delete if exists
57
+ shutil.copytree(local_dir / "hub_sdk", DOCS.parent / "hub_sdk") # for mkdocstrings
58
+ print(f"Cloned/Updated {repo} in {local_dir}")
59
+
60
+ # Add frontmatter
61
+ for file in tqdm((DOCS / "en").rglob("*.md"), desc="Adding frontmatter"):
62
+ update_markdown_files(file)
63
+
64
+
65
+ def update_page_title(file_path: Path, new_title: str):
66
+ """Update the title of an HTML file."""
67
+ # Read the content of the file
68
+ with open(file_path, encoding="utf-8") as file:
69
+ content = file.read()
70
+
71
+ # Replace the existing title with the new title
72
+ updated_content = re.sub(r"<title>.*?</title>", f"<title>{new_title}</title>", content)
73
+
74
+ # Write the updated content back to the file
75
+ with open(file_path, "w", encoding="utf-8") as file:
76
+ file.write(updated_content)
77
+
78
+
79
+ def update_html_head(script=""):
80
+ """Update the HTML head section of each file."""
81
+ html_files = Path(SITE).rglob("*.html")
82
+ for html_file in tqdm(html_files, desc="Processing HTML files"):
83
+ with html_file.open("r", encoding="utf-8") as file:
84
+ html_content = file.read()
85
+
86
+ if script in html_content: # script already in HTML file
87
+ return
88
+
89
+ head_end_index = html_content.lower().rfind("</head>")
90
+ if head_end_index != -1:
91
+ # Add the specified JavaScript to the HTML file just before the end of the head tag.
92
+ new_html_content = html_content[:head_end_index] + script + html_content[head_end_index:]
93
+ with html_file.open("w", encoding="utf-8") as file:
94
+ file.write(new_html_content)
95
+
96
+
97
+ def update_subdir_edit_links(subdir="", docs_url=""):
98
+ """Update the HTML head section of each file."""
99
+ if str(subdir[0]) == "/":
100
+ subdir = str(subdir[0])[1:]
101
+ html_files = (SITE / subdir).rglob("*.html")
102
+ for html_file in tqdm(html_files, desc="Processing subdir files"):
103
+ with html_file.open("r", encoding="utf-8") as file:
104
+ soup = BeautifulSoup(file, "html.parser")
105
+
106
+ # Find the anchor tag and update its href attribute
107
+ a_tag = soup.find("a", {"class": "md-content__button md-icon"})
108
+ if a_tag and a_tag["title"] == "Edit this page":
109
+ a_tag["href"] = f"{docs_url}{a_tag['href'].split(subdir)[-1]}"
110
+
111
+ # Write the updated HTML back to the file
112
+ with open(html_file, "w", encoding="utf-8") as file:
113
+ file.write(str(soup))
114
+
115
+
116
+ def update_markdown_files(md_filepath: Path):
117
+ """Creates or updates a Markdown file, ensuring frontmatter is present."""
118
+ if md_filepath.exists():
119
+ content = md_filepath.read_text().strip()
120
+
121
+ # Replace apostrophes
122
+ content = content.replace("‘", "'").replace("’", "'")
123
+
124
+ # Add frontmatter if missing
125
+ if not content.strip().startswith("---\n") and "macros" not in md_filepath.parts: # skip macros directory
126
+ header = "---\ncomments: true\ndescription: TODO ADD DESCRIPTION\nkeywords: TODO ADD KEYWORDS\n---\n\n"
127
+ content = header + content
128
+
129
+ # Ensure MkDocs admonitions "=== " lines are preceded and followed by empty newlines
130
+ lines = content.split("\n")
131
+ new_lines = []
132
+ for i, line in enumerate(lines):
133
+ stripped_line = line.strip()
134
+ if stripped_line.startswith("=== "):
135
+ if i > 0 and new_lines[-1] != "":
136
+ new_lines.append("")
137
+ new_lines.append(line)
138
+ if i < len(lines) - 1 and lines[i + 1].strip() != "":
139
+ new_lines.append("")
140
+ else:
141
+ new_lines.append(line)
142
+ content = "\n".join(new_lines)
143
+
144
+ # Add EOF newline if missing
145
+ if not content.endswith("\n"):
146
+ content += "\n"
147
+
148
+ # Save page
149
+ md_filepath.write_text(content)
150
+ return
151
+
152
+
153
+ def update_docs_html():
154
+ """Updates titles, edit links, head sections, and converts plaintext links in HTML documentation."""
155
+ # Update 404 titles
156
+ update_page_title(SITE / "404.html", new_title="Ultralytics Docs - Not Found")
157
+
158
+ # Update edit links
159
+ update_subdir_edit_links(
160
+ subdir="hub/sdk/", # do not use leading slash
161
+ docs_url="https://github.com/ultralytics/hub-sdk/tree/main/docs/",
162
+ )
163
+
164
+ # Convert plaintext links to HTML hyperlinks
165
+ files_modified = 0
166
+ for html_file in tqdm(SITE.rglob("*.html"), desc="Converting plaintext links"):
167
+ with open(html_file, encoding="utf-8") as file:
168
+ content = file.read()
169
+ updated_content = convert_plaintext_links_to_html(content)
170
+ if updated_content != content:
171
+ with open(html_file, "w", encoding="utf-8") as file:
172
+ file.write(updated_content)
173
+ files_modified += 1
174
+ print(f"Modified plaintext links in {files_modified} files.")
175
+
176
+ # Update HTML file head section
177
+ script = ""
178
+ if any(script):
179
+ update_html_head(script)
180
+
181
+ # Delete the /macros directory from the built site
182
+ macros_dir = SITE / "macros"
183
+ if macros_dir.exists():
184
+ print(f"Removing /macros directory from site: {macros_dir}")
185
+ shutil.rmtree(macros_dir)
186
+
187
+
188
+ def convert_plaintext_links_to_html(content):
189
+ """Convert plaintext links to HTML hyperlinks in the main content area only."""
190
+ soup = BeautifulSoup(content, "html.parser")
191
+
192
+ # Find the main content area (adjust this selector based on your HTML structure)
193
+ main_content = soup.find("main") or soup.find("div", class_="md-content")
194
+ if not main_content:
195
+ return content # Return original content if main content area not found
196
+
197
+ modified = False
198
+ for paragraph in main_content.find_all(["p", "li"]): # Focus on paragraphs and list items
199
+ for text_node in paragraph.find_all(string=True, recursive=False):
200
+ if text_node.parent.name not in {"a", "code"}: # Ignore links and code blocks
201
+ new_text = re.sub(
202
+ r'(https?://[^\s()<>]+(?:\.[^\s()<>]+)+)(?<![.,:;\'"])',
203
+ r'<a href="\1">\1</a>',
204
+ str(text_node),
205
+ )
206
+ if "<a" in new_text:
207
+ new_soup = BeautifulSoup(new_text, "html.parser")
208
+ text_node.replace_with(new_soup)
209
+ modified = True
210
+
211
+ return str(soup) if modified else content
212
+
213
+
214
+ def remove_macros():
215
+ """Removes the /macros directory and related entries in sitemap.xml from the built site."""
216
+ shutil.rmtree(SITE / "macros", ignore_errors=True)
217
+ (SITE / "sitemap.xml.gz").unlink(missing_ok=True)
218
+
219
+ # Process sitemap.xml
220
+ sitemap = SITE / "sitemap.xml"
221
+ lines = sitemap.read_text(encoding="utf-8").splitlines(keepends=True)
222
+
223
+ # Find indices of '/macros/' lines
224
+ macros_indices = [i for i, line in enumerate(lines) if "/macros/" in line]
225
+
226
+ # Create a set of indices to remove (including lines before and after)
227
+ indices_to_remove = set()
228
+ for i in macros_indices:
229
+ indices_to_remove.update(range(i - 1, i + 3)) # i-1, i, i+1, i+2, i+3
230
+
231
+ # Create new list of lines, excluding the ones to remove
232
+ new_lines = [line for i, line in enumerate(lines) if i not in indices_to_remove]
233
+
234
+ # Write the cleaned content back to the file
235
+ sitemap.write_text("".join(new_lines), encoding="utf-8")
236
+
237
+ print(f"Removed {len(macros_indices)} URLs containing '/macros/' from {sitemap}")
238
+
239
+
240
+ def main():
241
+ """Builds docs, updates titles and edit links, and prints local server command."""
242
+ prepare_docs_markdown()
243
+
244
+ # Build the main documentation
245
+ print(f"Building docs from {DOCS}")
246
+ subprocess.run(f"mkdocs build -f {DOCS.parent}/mkdocs.yml --strict", check=True, shell=True)
247
+ remove_macros()
248
+ print(f"Site built at {SITE}")
249
+
250
+ # Update docs HTML pages
251
+ update_docs_html()
252
+
253
+ # Show command to serve built website
254
+ print('Docs built correctly ✅\nServe site at http://localhost:8000 with "python -m http.server --directory site"')
255
+
256
+
257
+ if __name__ == "__main__":
258
+ main()
docs/build_reference.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Helper file to build Ultralytics Docs reference section. Recursively walks through ultralytics dir and builds an MkDocs
4
+ reference section of *.md files composed of classes and functions, and also creates a nav menu for use in mkdocs.yaml.
5
+
6
+ Note: Must be run from repository root directory. Do not run from docs directory.
7
+ """
8
+
9
+ import re
10
+ import subprocess
11
+ from collections import defaultdict
12
+ from pathlib import Path
13
+
14
+ # Constants
15
+ hub_sdk = False
16
+ if hub_sdk:
17
+ PACKAGE_DIR = Path("/Users/glennjocher/PycharmProjects/hub-sdk/hub_sdk")
18
+ REFERENCE_DIR = PACKAGE_DIR.parent / "docs/reference"
19
+ GITHUB_REPO = "ultralytics/hub-sdk"
20
+ else:
21
+ FILE = Path(__file__).resolve()
22
+ PACKAGE_DIR = FILE.parents[1] / "ultralytics" # i.e. /Users/glennjocher/PycharmProjects/ultralytics/ultralytics
23
+ REFERENCE_DIR = PACKAGE_DIR.parent / "docs/en/reference"
24
+ GITHUB_REPO = "ultralytics/ultralytics"
25
+
26
+
27
+ def extract_classes_and_functions(filepath: Path) -> tuple:
28
+ """Extracts class and function names from a given Python file."""
29
+ content = filepath.read_text()
30
+ class_pattern = r"(?:^|\n)class\s(\w+)(?:\(|:)"
31
+ func_pattern = r"(?:^|\n)def\s(\w+)\("
32
+
33
+ classes = re.findall(class_pattern, content)
34
+ functions = re.findall(func_pattern, content)
35
+
36
+ return classes, functions
37
+
38
+
39
+ def create_markdown(py_filepath: Path, module_path: str, classes: list, functions: list):
40
+ """Creates a Markdown file containing the API reference for the given Python module."""
41
+ md_filepath = py_filepath.with_suffix(".md")
42
+ exists = md_filepath.exists()
43
+
44
+ # Read existing content and keep header content between first two ---
45
+ header_content = ""
46
+ if exists:
47
+ existing_content = md_filepath.read_text()
48
+ header_parts = existing_content.split("---")
49
+ for part in header_parts:
50
+ if "description:" in part or "comments:" in part:
51
+ header_content += f"---{part}---\n\n"
52
+ if not any(header_content):
53
+ header_content = "---\ndescription: TODO ADD DESCRIPTION\nkeywords: TODO ADD KEYWORDS\n---\n\n"
54
+
55
+ module_name = module_path.replace(".__init__", "")
56
+ module_path = module_path.replace(".", "/")
57
+ url = f"https://github.com/{GITHUB_REPO}/blob/main/{module_path}.py"
58
+ edit = f"https://github.com/{GITHUB_REPO}/edit/main/{module_path}.py"
59
+ pretty = url.replace("__init__.py", "\\_\\_init\\_\\_.py") # properly display __init__.py filenames
60
+ title_content = (
61
+ f"# Reference for `{module_path}.py`\n\n"
62
+ f"!!! note\n\n"
63
+ f" This file is available at [{pretty}]({url}). If you spot a problem please help fix it by [contributing]"
64
+ f"(https://docs.ultralytics.com/help/contributing/) a [Pull Request]({edit}) 🛠️. Thank you 🙏!\n\n"
65
+ )
66
+ md_content = ["<br>\n"] + [f"## ::: {module_name}.{class_name}\n\n<br><br><hr><br>\n" for class_name in classes]
67
+ md_content.extend(f"## ::: {module_name}.{func_name}\n\n<br><br><hr><br>\n" for func_name in functions)
68
+ md_content[-1] = md_content[-1].replace("<hr><br>", "") # remove last horizontal line
69
+ md_content = header_content + title_content + "\n".join(md_content)
70
+ if not md_content.endswith("\n"):
71
+ md_content += "\n"
72
+
73
+ md_filepath.parent.mkdir(parents=True, exist_ok=True)
74
+ md_filepath.write_text(md_content)
75
+
76
+ if not exists:
77
+ # Add new markdown file to the git staging area
78
+ print(f"Created new file '{md_filepath}'")
79
+ subprocess.run(["git", "add", "-f", str(md_filepath)], check=True, cwd=PACKAGE_DIR)
80
+
81
+ return md_filepath.relative_to(PACKAGE_DIR.parent)
82
+
83
+
84
+ def nested_dict() -> defaultdict:
85
+ """Creates and returns a nested defaultdict."""
86
+ return defaultdict(nested_dict)
87
+
88
+
89
+ def sort_nested_dict(d: dict) -> dict:
90
+ """Sorts a nested dictionary recursively."""
91
+ return {key: sort_nested_dict(value) if isinstance(value, dict) else value for key, value in sorted(d.items())}
92
+
93
+
94
+ def create_nav_menu_yaml(nav_items: list, save: bool = False):
95
+ """Creates a YAML file for the navigation menu based on the provided list of items."""
96
+ nav_tree = nested_dict()
97
+
98
+ for item_str in nav_items:
99
+ item = Path(item_str)
100
+ parts = item.parts
101
+ current_level = nav_tree["reference"]
102
+ for part in parts[2:-1]: # skip the first two parts (docs and reference) and the last part (filename)
103
+ current_level = current_level[part]
104
+
105
+ md_file_name = parts[-1].replace(".md", "")
106
+ current_level[md_file_name] = item
107
+
108
+ nav_tree_sorted = sort_nested_dict(nav_tree)
109
+
110
+ def _dict_to_yaml(d, level=0):
111
+ """Converts a nested dictionary to a YAML-formatted string with indentation."""
112
+ yaml_str = ""
113
+ indent = " " * level
114
+ for k, v in d.items():
115
+ if isinstance(v, dict):
116
+ yaml_str += f"{indent}- {k}:\n{_dict_to_yaml(v, level + 1)}"
117
+ else:
118
+ yaml_str += f"{indent}- {k}: {str(v).replace('docs/en/', '')}\n"
119
+ return yaml_str
120
+
121
+ # Print updated YAML reference section
122
+ print("Scan complete, new mkdocs.yaml reference section is:\n\n", _dict_to_yaml(nav_tree_sorted))
123
+
124
+ # Save new YAML reference section
125
+ if save:
126
+ (PACKAGE_DIR.parent / "nav_menu_updated.yml").write_text(_dict_to_yaml(nav_tree_sorted))
127
+
128
+
129
+ def main():
130
+ """Main function to extract class and function names, create Markdown files, and generate a YAML navigation menu."""
131
+ nav_items = []
132
+
133
+ for py_filepath in PACKAGE_DIR.rglob("*.py"):
134
+ classes, functions = extract_classes_and_functions(py_filepath)
135
+
136
+ if classes or functions:
137
+ py_filepath_rel = py_filepath.relative_to(PACKAGE_DIR)
138
+ md_filepath = REFERENCE_DIR / py_filepath_rel
139
+ module_path = f"{PACKAGE_DIR.name}.{py_filepath_rel.with_suffix('').as_posix().replace('/', '.')}"
140
+ md_rel_filepath = create_markdown(md_filepath, module_path, classes, functions)
141
+ nav_items.append(str(md_rel_filepath))
142
+
143
+ create_nav_menu_yaml(nav_items)
144
+
145
+
146
+ if __name__ == "__main__":
147
+ main()
docs/coming_soon_template.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ description: Discover what's next for Ultralytics with our under-construction page, previewing new, groundbreaking AI and ML features coming soon.
3
+ keywords: Ultralytics, coming soon, under construction, new features, AI updates, ML advancements, YOLO, technology preview
4
+ ---
5
+
6
+ # Under Construction 🏗️🌟
7
+
8
+ Welcome to the [Ultralytics](https://www.ultralytics.com/) "Under Construction" page! Here, we're hard at work developing the next generation of AI and ML innovations. This page serves as a teaser for the exciting updates and new features we're eager to share with you!
9
+
10
+ ## Exciting New Features on the Way 🎉
11
+
12
+ - **Innovative Breakthroughs:** Get ready for advanced features and services that will transform your AI and ML experience.
13
+ - **New Horizons:** Anticipate novel products that redefine AI and ML capabilities.
14
+ - **Enhanced Services:** We're upgrading our services for greater efficiency and user-friendliness.
15
+
16
+ ## Stay Updated 🚧
17
+
18
+ This placeholder page is your first stop for upcoming developments. Keep an eye out for:
19
+
20
+ - **Newsletter:** Subscribe [here](https://www.ultralytics.com/#newsletter) for the latest news.
21
+ - **Social Media:** Follow us [here](https://www.linkedin.com/company/ultralytics) for updates and teasers.
22
+ - **Blog:** Visit our [blog](https://www.ultralytics.com/blog) for detailed insights.
23
+
24
+ ## We Value Your Input 🗣️
25
+
26
+ Your feedback shapes our future releases. Share your thoughts and suggestions [here](https://www.ultralytics.com/survey).
27
+
28
+ ## Thank You, Community! 🌍
29
+
30
+ Your [contributions](https://docs.ultralytics.com/help/contributing/) inspire our continuous [innovation](https://github.com/ultralytics/ultralytics). Stay tuned for the big reveal of what's next in AI and ML at Ultralytics!
31
+
32
+ ---
33
+
34
+ Excited for what's coming? Bookmark this page and get ready for a transformative AI and ML journey with Ultralytics! 🛠️🤖
docs/en/CNAME ADDED
@@ -0,0 +1 @@
 
 
1
+ docs.ultralytics.com
docs/en/datasets/classify/caltech101.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the widely-used Caltech-101 dataset with 9,000 images across 101 categories. Ideal for object recognition tasks in machine learning and computer vision.
4
+ keywords: Caltech-101, dataset, object recognition, machine learning, computer vision, YOLO, deep learning, research, AI
5
+ ---
6
+
7
+ # Caltech-101 Dataset
8
+
9
+ The [Caltech-101](https://data.caltech.edu/records/mzrjq-6wc02) dataset is a widely used dataset for object recognition tasks, containing around 9,000 images from 101 object categories. The categories were chosen to reflect a variety of real-world objects, and the images themselves were carefully selected and annotated to provide a challenging benchmark for object recognition algorithms.
10
+
11
+ ## Key Features
12
+
13
+ - The Caltech-101 dataset comprises around 9,000 color images divided into 101 categories.
14
+ - The categories encompass a wide variety of objects, including animals, vehicles, household items, and people.
15
+ - The number of images per category varies, with about 40 to 800 images in each category.
16
+ - Images are of variable sizes, with most images being medium resolution.
17
+ - Caltech-101 is widely used for training and testing in the field of machine learning, particularly for object recognition tasks.
18
+
19
+ ## Dataset Structure
20
+
21
+ Unlike many other datasets, the Caltech-101 dataset is not formally split into training and testing sets. Users typically create their own splits based on their specific needs. However, a common practice is to use a random subset of images for training (e.g., 30 images per category) and the remaining images for testing.
22
+
23
+ ## Applications
24
+
25
+ The Caltech-101 dataset is extensively used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object recognition tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), Support Vector Machines (SVMs), and various other machine learning algorithms. Its wide variety of categories and high-quality images make it an excellent dataset for research and development in the field of machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv).
26
+
27
+ ## Usage
28
+
29
+ To train a YOLO model on the Caltech-101 dataset for 100 epochs, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
30
+
31
+ !!! example "Train Example"
32
+
33
+ === "Python"
34
+
35
+ ```python
36
+ from ultralytics import YOLO
37
+
38
+ # Load a model
39
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
40
+
41
+ # Train the model
42
+ results = model.train(data="caltech101", epochs=100, imgsz=416)
43
+ ```
44
+
45
+ === "CLI"
46
+
47
+ ```bash
48
+ # Start training from a pretrained *.pt model
49
+ yolo classify train data=caltech101 model=yolo11n-cls.pt epochs=100 imgsz=416
50
+ ```
51
+
52
+ ## Sample Images and Annotations
53
+
54
+ The Caltech-101 dataset contains high-quality color images of various objects, providing a well-structured dataset for object recognition tasks. Here are some examples of images from the dataset:
55
+
56
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/caltech101-sample-image.avif)
57
+
58
+ The example showcases the variety and complexity of the objects in the Caltech-101 dataset, emphasizing the significance of a diverse dataset for training robust object recognition models.
59
+
60
+ ## Citations and Acknowledgments
61
+
62
+ If you use the Caltech-101 dataset in your research or development work, please cite the following paper:
63
+
64
+ !!! quote ""
65
+
66
+ === "BibTeX"
67
+
68
+ ```bibtex
69
+ @article{fei2007learning,
70
+ title={Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories},
71
+ author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
72
+ journal={Computer vision and Image understanding},
73
+ volume={106},
74
+ number={1},
75
+ pages={59--70},
76
+ year={2007},
77
+ publisher={Elsevier}
78
+ }
79
+ ```
80
+
81
+ We would like to acknowledge Li Fei-Fei, Rob Fergus, and Pietro Perona for creating and maintaining the Caltech-101 dataset as a valuable resource for the machine learning and computer vision research community. For more information about the Caltech-101 dataset and its creators, visit the [Caltech-101 dataset website](https://data.caltech.edu/records/mzrjq-6wc02).
82
+
83
+ ## FAQ
84
+
85
+ ### What is the Caltech-101 dataset used for in machine learning?
86
+
87
+ The [Caltech-101](https://data.caltech.edu/records/mzrjq-6wc02) dataset is widely used in machine learning for object recognition tasks. It contains around 9,000 images across 101 categories, providing a challenging benchmark for evaluating object recognition algorithms. Researchers leverage it to train and test models, especially Convolutional [Neural Networks](https://www.ultralytics.com/glossary/neural-network-nn) (CNNs) and [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs), in computer vision.
88
+
89
+ ### How can I train an Ultralytics YOLO model on the Caltech-101 dataset?
90
+
91
+ To train an Ultralytics YOLO model on the Caltech-101 dataset, you can use the provided code snippets. For example, to train for 100 [epochs](https://www.ultralytics.com/glossary/epoch):
92
+
93
+ !!! example "Train Example"
94
+
95
+ === "Python"
96
+
97
+ ```python
98
+ from ultralytics import YOLO
99
+
100
+ # Load a model
101
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
102
+
103
+ # Train the model
104
+ results = model.train(data="caltech101", epochs=100, imgsz=416)
105
+ ```
106
+
107
+ === "CLI"
108
+
109
+ ```bash
110
+ # Start training from a pretrained *.pt model
111
+ yolo classify train data=caltech101 model=yolo11n-cls.pt epochs=100 imgsz=416
112
+ ```
113
+
114
+ For more detailed arguments and options, refer to the model [Training](../../modes/train.md) page.
115
+
116
+ ### What are the key features of the Caltech-101 dataset?
117
+
118
+ The Caltech-101 dataset includes:
119
+
120
+ - Around 9,000 color images across 101 categories.
121
+ - Categories covering a diverse range of objects, including animals, vehicles, and household items.
122
+ - Variable number of images per category, typically between 40 and 800.
123
+ - Variable image sizes, with most being medium resolution.
124
+
125
+ These features make it an excellent choice for training and evaluating object recognition models in [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision.
126
+
127
+ ### Why should I cite the Caltech-101 dataset in my research?
128
+
129
+ Citing the Caltech-101 dataset in your research acknowledges the creators' contributions and provides a reference for others who might use the dataset. The recommended citation is:
130
+
131
+ !!! quote ""
132
+
133
+ === "BibTeX"
134
+
135
+ ```bibtex
136
+ @article{fei2007learning,
137
+ title={Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories},
138
+ author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
139
+ journal={Computer vision and Image understanding},
140
+ volume={106},
141
+ number={1},
142
+ pages={59--70},
143
+ year={2007},
144
+ publisher={Elsevier}
145
+ }
146
+ ```
147
+
148
+ Citing helps in maintaining the integrity of academic work and assists peers in locating the original resource.
149
+
150
+ ### Can I use Ultralytics HUB for training models on the Caltech-101 dataset?
151
+
152
+ Yes, you can use Ultralytics HUB for training models on the Caltech-101 dataset. Ultralytics HUB provides an intuitive platform for managing datasets, training models, and deploying them without extensive coding. For a detailed guide, refer to the [how to train your custom models with Ultralytics HUB](https://www.ultralytics.com/blog/how-to-train-your-custom-models-with-ultralytics-hub) blog post.
docs/en/datasets/classify/caltech256.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the Caltech-256 dataset, featuring 30,000 images across 257 categories, ideal for training and testing object recognition algorithms.
4
+ keywords: Caltech-256 dataset, object classification, image dataset, machine learning, computer vision, deep learning, YOLO, training dataset
5
+ ---
6
+
7
+ # Caltech-256 Dataset
8
+
9
+ The [Caltech-256](https://data.caltech.edu/records/nyy15-4j048) dataset is an extensive collection of images used for object classification tasks. It contains around 30,000 images divided into 257 categories (256 object categories and 1 background category). The images are carefully curated and annotated to provide a challenging and diverse benchmark for object recognition algorithms.
10
+
11
+ <p align="center">
12
+ <br>
13
+ <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/isc06_9qnM0"
14
+ title="YouTube video player" frameborder="0"
15
+ allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
16
+ allowfullscreen>
17
+ </iframe>
18
+ <br>
19
+ <strong>Watch:</strong> How to Train <a href="https://www.ultralytics.com/glossary/image-classification">Image Classification</a> Model using Caltech-256 Dataset with Ultralytics HUB
20
+ </p>
21
+
22
+ ## Key Features
23
+
24
+ - The Caltech-256 dataset comprises around 30,000 color images divided into 257 categories.
25
+ - Each category contains a minimum of 80 images.
26
+ - The categories encompass a wide variety of real-world objects, including animals, vehicles, household items, and people.
27
+ - Images are of variable sizes and resolutions.
28
+ - Caltech-256 is widely used for training and testing in the field of machine learning, particularly for object recognition tasks.
29
+
30
+ ## Dataset Structure
31
+
32
+ Like Caltech-101, the Caltech-256 dataset does not have a formal split between training and testing sets. Users typically create their own splits according to their specific needs. A common practice is to use a random subset of images for training and the remaining images for testing.
33
+
34
+ ## Applications
35
+
36
+ The Caltech-256 dataset is extensively used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object recognition tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), Support Vector Machines (SVMs), and various other machine learning algorithms. Its diverse set of categories and high-quality images make it an invaluable dataset for research and development in the field of machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv).
37
+
38
+ ## Usage
39
+
40
+ To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
41
+
42
+ !!! example "Train Example"
43
+
44
+ === "Python"
45
+
46
+ ```python
47
+ from ultralytics import YOLO
48
+
49
+ # Load a model
50
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
51
+
52
+ # Train the model
53
+ results = model.train(data="caltech256", epochs=100, imgsz=416)
54
+ ```
55
+
56
+ === "CLI"
57
+
58
+ ```bash
59
+ # Start training from a pretrained *.pt model
60
+ yolo classify train data=caltech256 model=yolo11n-cls.pt epochs=100 imgsz=416
61
+ ```
62
+
63
+ ## Sample Images and Annotations
64
+
65
+ The Caltech-256 dataset contains high-quality color images of various objects, providing a comprehensive dataset for object recognition tasks. Here are some examples of images from the dataset ([credit](https://ml4a.github.io/demos/tsne_viewer.html)):
66
+
67
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/caltech256-sample-image.avif)
68
+
69
+ The example showcases the diversity and complexity of the objects in the Caltech-256 dataset, emphasizing the importance of a varied dataset for training robust object recognition models.
70
+
71
+ ## Citations and Acknowledgments
72
+
73
+ If you use the Caltech-256 dataset in your research or development work, please cite the following paper:
74
+
75
+ !!! quote ""
76
+
77
+ === "BibTeX"
78
+
79
+ ```bibtex
80
+ @article{griffin2007caltech,
81
+ title={Caltech-256 object category dataset},
82
+ author={Griffin, Gregory and Holub, Alex and Perona, Pietro},
83
+ year={2007}
84
+ }
85
+ ```
86
+
87
+ We would like to acknowledge Gregory Griffin, Alex Holub, and Pietro Perona for creating and maintaining the Caltech-256 dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision research community. For more information about the
88
+
89
+ Caltech-256 dataset and its creators, visit the [Caltech-256 dataset website](https://data.caltech.edu/records/nyy15-4j048).
90
+
91
+ ## FAQ
92
+
93
+ ### What is the Caltech-256 dataset and why is it important for machine learning?
94
+
95
+ The [Caltech-256](https://data.caltech.edu/records/nyy15-4j048) dataset is a large image dataset used primarily for object classification tasks in machine learning and computer vision. It consists of around 30,000 color images divided into 257 categories, covering a wide range of real-world objects. The dataset's diverse and high-quality images make it an excellent benchmark for evaluating object recognition algorithms, which is crucial for developing robust machine learning models.
96
+
97
+ ### How can I train a YOLO model on the Caltech-256 dataset using Python or CLI?
98
+
99
+ To train a YOLO model on the Caltech-256 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch), you can use the following code snippets. Refer to the model [Training](../../modes/train.md) page for additional options.
100
+
101
+ !!! example "Train Example"
102
+
103
+ === "Python"
104
+
105
+ ```python
106
+ from ultralytics import YOLO
107
+
108
+ # Load a model
109
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model
110
+
111
+ # Train the model
112
+ results = model.train(data="caltech256", epochs=100, imgsz=416)
113
+ ```
114
+
115
+ === "CLI"
116
+
117
+ ```bash
118
+ # Start training from a pretrained *.pt model
119
+ yolo classify train data=caltech256 model=yolo11n-cls.pt epochs=100 imgsz=416
120
+ ```
121
+
122
+ ### What are the most common use cases for the Caltech-256 dataset?
123
+
124
+ The Caltech-256 dataset is widely used for various object recognition tasks such as:
125
+
126
+ - Training Convolutional [Neural Networks](https://www.ultralytics.com/glossary/neural-network-nn) (CNNs)
127
+ - Evaluating the performance of [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs)
128
+ - Benchmarking new deep learning algorithms
129
+ - Developing [object detection](https://www.ultralytics.com/glossary/object-detection) models using frameworks like Ultralytics YOLO
130
+
131
+ Its diversity and comprehensive annotations make it ideal for research and development in machine learning and computer vision.
132
+
133
+ ### How is the Caltech-256 dataset structured and split for training and testing?
134
+
135
+ The Caltech-256 dataset does not come with a predefined split for training and testing. Users typically create their own splits according to their specific needs. A common approach is to randomly select a subset of images for training and use the remaining images for testing. This flexibility allows users to tailor the dataset to their specific project requirements and experimental setups.
136
+
137
+ ### Why should I use Ultralytics YOLO for training models on the Caltech-256 dataset?
138
+
139
+ Ultralytics YOLO models offer several advantages for training on the Caltech-256 dataset:
140
+
141
+ - **High Accuracy**: YOLO models are known for their state-of-the-art performance in object detection tasks.
142
+ - **Speed**: They provide real-time inference capabilities, making them suitable for applications requiring quick predictions.
143
+ - **Ease of Use**: With Ultralytics HUB, users can train, validate, and deploy models without extensive coding.
144
+ - **Pretrained Models**: Starting from pretrained models, like `yolo11n-cls.pt`, can significantly reduce training time and improve model [accuracy](https://www.ultralytics.com/glossary/accuracy).
145
+
146
+ For more details, explore our [comprehensive training guide](../../modes/train.md).
docs/en/datasets/classify/cifar10.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the CIFAR-10 dataset, featuring 60,000 color images in 10 classes. Learn about its structure, applications, and how to train models using YOLO.
4
+ keywords: CIFAR-10, dataset, machine learning, computer vision, image classification, YOLO, deep learning, neural networks
5
+ ---
6
+
7
+ # CIFAR-10 Dataset
8
+
9
+ The [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) (Canadian Institute For Advanced Research) dataset is a collection of images used widely for [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision algorithms. It was developed by researchers at the CIFAR institute and consists of 60,000 32x32 color images in 10 different classes.
10
+
11
+ <p align="center">
12
+ <br>
13
+ <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/fLBbyhPbWzY"
14
+ title="YouTube video player" frameborder="0"
15
+ allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
16
+ allowfullscreen>
17
+ </iframe>
18
+ <br>
19
+ <strong>Watch:</strong> How to Train an <a href="https://www.ultralytics.com/glossary/image-classification">Image Classification</a> Model with CIFAR-10 Dataset using Ultralytics YOLO11
20
+ </p>
21
+
22
+ ## Key Features
23
+
24
+ - The CIFAR-10 dataset consists of 60,000 images, divided into 10 classes.
25
+ - Each class contains 6,000 images, split into 5,000 for training and 1,000 for testing.
26
+ - The images are colored and of size 32x32 pixels.
27
+ - The 10 different classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
28
+ - CIFAR-10 is commonly used for training and testing in the field of machine learning and computer vision.
29
+
30
+ ## Dataset Structure
31
+
32
+ The CIFAR-10 dataset is split into two subsets:
33
+
34
+ 1. **Training Set**: This subset contains 50,000 images used for training machine learning models.
35
+ 2. **Testing Set**: This subset consists of 10,000 images used for testing and benchmarking the trained models.
36
+
37
+ ## Applications
38
+
39
+ The CIFAR-10 dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in image classification tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), Support Vector Machines (SVMs), and various other machine learning algorithms. The diversity of the dataset in terms of classes and the presence of color images make it a well-rounded dataset for research and development in the field of machine learning and computer vision.
40
+
41
+ ## Usage
42
+
43
+ To train a YOLO model on the CIFAR-10 dataset for 100 epochs with an image size of 32x32, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
44
+
45
+ !!! example "Train Example"
46
+
47
+ === "Python"
48
+
49
+ ```python
50
+ from ultralytics import YOLO
51
+
52
+ # Load a model
53
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
54
+
55
+ # Train the model
56
+ results = model.train(data="cifar10", epochs=100, imgsz=32)
57
+ ```
58
+
59
+ === "CLI"
60
+
61
+ ```bash
62
+ # Start training from a pretrained *.pt model
63
+ yolo classify train data=cifar10 model=yolo11n-cls.pt epochs=100 imgsz=32
64
+ ```
65
+
66
+ ## Sample Images and Annotations
67
+
68
+ The CIFAR-10 dataset contains color images of various objects, providing a well-structured dataset for image classification tasks. Here are some examples of images from the dataset:
69
+
70
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/cifar10-sample-image.avif)
71
+
72
+ The example showcases the variety and complexity of the objects in the CIFAR-10 dataset, highlighting the importance of a diverse dataset for training robust image classification models.
73
+
74
+ ## Citations and Acknowledgments
75
+
76
+ If you use the CIFAR-10 dataset in your research or development work, please cite the following paper:
77
+
78
+ !!! quote ""
79
+
80
+ === "BibTeX"
81
+
82
+ ```bibtex
83
+ @TECHREPORT{Krizhevsky09learningmultiple,
84
+ author={Alex Krizhevsky},
85
+ title={Learning multiple layers of features from tiny images},
86
+ institution={},
87
+ year={2009}
88
+ }
89
+ ```
90
+
91
+ We would like to acknowledge Alex Krizhevsky for creating and maintaining the CIFAR-10 dataset as a valuable resource for the machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) research community. For more information about the CIFAR-10 dataset and its creator, visit the [CIFAR-10 dataset website](https://www.cs.toronto.edu/~kriz/cifar.html).
92
+
93
+ ## FAQ
94
+
95
+ ### How can I train a YOLO model on the CIFAR-10 dataset?
96
+
97
+ To train a YOLO model on the CIFAR-10 dataset using Ultralytics, you can follow the examples provided for both Python and CLI. Here is a basic example to train your model for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 32x32 pixels:
98
+
99
+ !!! example
100
+
101
+ === "Python"
102
+
103
+ ```python
104
+ from ultralytics import YOLO
105
+
106
+ # Load a model
107
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
108
+
109
+ # Train the model
110
+ results = model.train(data="cifar10", epochs=100, imgsz=32)
111
+ ```
112
+
113
+ === "CLI"
114
+
115
+ ```bash
116
+ # Start training from a pretrained *.pt model
117
+ yolo classify train data=cifar10 model=yolo11n-cls.pt epochs=100 imgsz=32
118
+ ```
119
+
120
+ For more details, refer to the model [Training](../../modes/train.md) page.
121
+
122
+ ### What are the key features of the CIFAR-10 dataset?
123
+
124
+ The CIFAR-10 dataset consists of 60,000 color images divided into 10 classes. Each class contains 6,000 images, with 5,000 for training and 1,000 for testing. The images are 32x32 pixels in size and vary across the following categories:
125
+
126
+ - Airplanes
127
+ - Cars
128
+ - Birds
129
+ - Cats
130
+ - Deer
131
+ - Dogs
132
+ - Frogs
133
+ - Horses
134
+ - Ships
135
+ - Trucks
136
+
137
+ This diverse dataset is essential for training image classification models in fields such as machine learning and computer vision. For more information, visit the CIFAR-10 sections on [dataset structure](#dataset-structure) and [applications](#applications).
138
+
139
+ ### Why use the CIFAR-10 dataset for image classification tasks?
140
+
141
+ The CIFAR-10 dataset is an excellent benchmark for image classification due to its diversity and structure. It contains a balanced mix of 60,000 labeled images across 10 different categories, which helps in training robust and generalized models. It is widely used for evaluating deep learning models, including Convolutional [Neural Networks](https://www.ultralytics.com/glossary/neural-network-nn) (CNNs) and other machine learning algorithms. The dataset is relatively small, making it suitable for quick experimentation and algorithm development. Explore its numerous applications in the [applications](#applications) section.
142
+
143
+ ### How is the CIFAR-10 dataset structured?
144
+
145
+ The CIFAR-10 dataset is structured into two main subsets:
146
+
147
+ 1. **Training Set**: Contains 50,000 images used for training machine learning models.
148
+ 2. **Testing Set**: Consists of 10,000 images for testing and benchmarking the trained models.
149
+
150
+ Each subset comprises images categorized into 10 classes, with their annotations readily available for model training and evaluation. For more detailed information, refer to the [dataset structure](#dataset-structure) section.
151
+
152
+ ### How can I cite the CIFAR-10 dataset in my research?
153
+
154
+ If you use the CIFAR-10 dataset in your research or development projects, make sure to cite the following paper:
155
+
156
+ !!! quote ""
157
+
158
+ === "BibTeX"
159
+
160
+ ```bibtex
161
+ @TECHREPORT{Krizhevsky09learningmultiple,
162
+ author={Alex Krizhevsky},
163
+ title={Learning multiple layers of features from tiny images},
164
+ institution={},
165
+ year={2009}
166
+ }
167
+ ```
168
+
169
+ Acknowledging the dataset's creators helps support continued research and development in the field. For more details, see the [citations and acknowledgments](#citations-and-acknowledgments) section.
170
+
171
+ ### What are some practical examples of using the CIFAR-10 dataset?
172
+
173
+ The CIFAR-10 dataset is often used for training image classification models, such as Convolutional Neural Networks (CNNs) and [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs). These models can be employed in various computer vision tasks including [object detection](https://www.ultralytics.com/glossary/object-detection), [image recognition](https://www.ultralytics.com/glossary/image-recognition), and automated tagging. To see some practical examples, check the code snippets in the [usage](#usage) section.
docs/en/datasets/classify/cifar100.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the CIFAR-100 dataset, consisting of 60,000 32x32 color images across 100 classes. Ideal for machine learning and computer vision tasks.
4
+ keywords: CIFAR-100, dataset, machine learning, computer vision, image classification, deep learning, YOLO, training, testing, Alex Krizhevsky
5
+ ---
6
+
7
+ # CIFAR-100 Dataset
8
+
9
+ The [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html) (Canadian Institute For Advanced Research) dataset is a significant extension of the CIFAR-10 dataset, composed of 60,000 32x32 color images in 100 different classes. It was developed by researchers at the CIFAR institute, offering a more challenging dataset for more complex machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks.
10
+
11
+ ## Key Features
12
+
13
+ - The CIFAR-100 dataset consists of 60,000 images, divided into 100 classes.
14
+ - Each class contains 600 images, split into 500 for training and 100 for testing.
15
+ - The images are colored and of size 32x32 pixels.
16
+ - The 100 different classes are grouped into 20 coarse categories for higher level classification.
17
+ - CIFAR-100 is commonly used for training and testing in the field of machine learning and computer vision.
18
+
19
+ ## Dataset Structure
20
+
21
+ The CIFAR-100 dataset is split into two subsets:
22
+
23
+ 1. **Training Set**: This subset contains 50,000 images used for training machine learning models.
24
+ 2. **Testing Set**: This subset consists of 10,000 images used for testing and benchmarking the trained models.
25
+
26
+ ## Applications
27
+
28
+ The CIFAR-100 dataset is extensively used for training and evaluating deep learning models in image classification tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), Support Vector Machines (SVMs), and various other machine learning algorithms. The diversity of the dataset in terms of classes and the presence of color images make it a more challenging and comprehensive dataset for research and development in the field of machine learning and computer vision.
29
+
30
+ ## Usage
31
+
32
+ To train a YOLO model on the CIFAR-100 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 32x32, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
33
+
34
+ !!! example "Train Example"
35
+
36
+ === "Python"
37
+
38
+ ```python
39
+ from ultralytics import YOLO
40
+
41
+ # Load a model
42
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
43
+
44
+ # Train the model
45
+ results = model.train(data="cifar100", epochs=100, imgsz=32)
46
+ ```
47
+
48
+ === "CLI"
49
+
50
+ ```bash
51
+ # Start training from a pretrained *.pt model
52
+ yolo classify train data=cifar100 model=yolo11n-cls.pt epochs=100 imgsz=32
53
+ ```
54
+
55
+ ## Sample Images and Annotations
56
+
57
+ The CIFAR-100 dataset contains color images of various objects, providing a well-structured dataset for [image classification](https://www.ultralytics.com/glossary/image-classification) tasks. Here are some examples of images from the dataset:
58
+
59
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/cifar100-sample-image.avif)
60
+
61
+ The example showcases the variety and complexity of the objects in the CIFAR-100 dataset, highlighting the importance of a diverse dataset for training robust image classification models.
62
+
63
+ ## Citations and Acknowledgments
64
+
65
+ If you use the CIFAR-100 dataset in your research or development work, please cite the following paper:
66
+
67
+ !!! quote ""
68
+
69
+ === "BibTeX"
70
+
71
+ ```bibtex
72
+ @TECHREPORT{Krizhevsky09learningmultiple,
73
+ author={Alex Krizhevsky},
74
+ title={Learning multiple layers of features from tiny images},
75
+ institution={},
76
+ year={2009}
77
+ }
78
+ ```
79
+
80
+ We would like to acknowledge Alex Krizhevsky for creating and maintaining the CIFAR-100 dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision research community. For more information about the CIFAR-100 dataset and its creator, visit the [CIFAR-100 dataset website](https://www.cs.toronto.edu/~kriz/cifar.html).
81
+
82
+ ## FAQ
83
+
84
+ ### What is the CIFAR-100 dataset and why is it significant?
85
+
86
+ The [CIFAR-100 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) is a large collection of 60,000 32x32 color images classified into 100 classes. Developed by the Canadian Institute For Advanced Research (CIFAR), it provides a challenging dataset ideal for complex machine learning and computer vision tasks. Its significance lies in the diversity of classes and the small size of the images, making it a valuable resource for training and testing deep learning models, like Convolutional [Neural Networks](https://www.ultralytics.com/glossary/neural-network-nn) (CNNs), using frameworks such as Ultralytics YOLO.
87
+
88
+ ### How do I train a YOLO model on the CIFAR-100 dataset?
89
+
90
+ You can train a YOLO model on the CIFAR-100 dataset using either Python or CLI commands. Here's how:
91
+
92
+ !!! example "Train Example"
93
+
94
+ === "Python"
95
+
96
+ ```python
97
+ from ultralytics import YOLO
98
+
99
+ # Load a model
100
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
101
+
102
+ # Train the model
103
+ results = model.train(data="cifar100", epochs=100, imgsz=32)
104
+ ```
105
+
106
+ === "CLI"
107
+
108
+ ```bash
109
+ # Start training from a pretrained *.pt model
110
+ yolo classify train data=cifar100 model=yolo11n-cls.pt epochs=100 imgsz=32
111
+ ```
112
+
113
+ For a comprehensive list of available arguments, please refer to the model [Training](../../modes/train.md) page.
114
+
115
+ ### What are the primary applications of the CIFAR-100 dataset?
116
+
117
+ The CIFAR-100 dataset is extensively used in training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models for image classification. Its diverse set of 100 classes, grouped into 20 coarse categories, provides a challenging environment for testing algorithms such as Convolutional Neural Networks (CNNs), [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs), and various other machine learning approaches. This dataset is a key resource in research and development within machine learning and computer vision fields.
118
+
119
+ ### How is the CIFAR-100 dataset structured?
120
+
121
+ The CIFAR-100 dataset is split into two main subsets:
122
+
123
+ 1. **Training Set**: Contains 50,000 images used for training machine learning models.
124
+ 2. **Testing Set**: Consists of 10,000 images used for testing and benchmarking the trained models.
125
+
126
+ Each of the 100 classes contains 600 images, with 500 images for training and 100 for testing, making it uniquely suited for rigorous academic and industrial research.
127
+
128
+ ### Where can I find sample images and annotations from the CIFAR-100 dataset?
129
+
130
+ The CIFAR-100 dataset includes a variety of color images of various objects, making it a structured dataset for image classification tasks. You can refer to the documentation page to see [sample images and annotations](#sample-images-and-annotations). These examples highlight the dataset's diversity and complexity, important for training robust image classification models.
docs/en/datasets/classify/fashion-mnist.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the Fashion-MNIST dataset, a modern replacement for MNIST with 70,000 Zalando article images. Ideal for benchmarking machine learning models.
4
+ keywords: Fashion-MNIST, image classification, Zalando dataset, machine learning, deep learning, CNN, dataset overview
5
+ ---
6
+
7
+ # Fashion-MNIST Dataset
8
+
9
+ The [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset is a database of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Fashion-MNIST is intended to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) algorithms.
10
+
11
+ <p align="center">
12
+ <br>
13
+ <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/eX5ad6udQ9Q"
14
+ title="YouTube video player" frameborder="0"
15
+ allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
16
+ allowfullscreen>
17
+ </iframe>
18
+ <br>
19
+ <strong>Watch:</strong> How to do <a href="https://www.ultralytics.com/glossary/image-classification">Image Classification</a> on Fashion MNIST Dataset using Ultralytics YOLO11
20
+ </p>
21
+
22
+ ## Key Features
23
+
24
+ - Fashion-MNIST contains 60,000 training images and 10,000 testing images of Zalando's article images.
25
+ - The dataset comprises grayscale images of size 28x28 pixels.
26
+ - Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255.
27
+ - Fashion-MNIST is widely used for training and testing in the field of machine learning, especially for image classification tasks.
28
+
29
+ ## Dataset Structure
30
+
31
+ The Fashion-MNIST dataset is split into two subsets:
32
+
33
+ 1. **Training Set**: This subset contains 60,000 images used for training machine learning models.
34
+ 2. **Testing Set**: This subset consists of 10,000 images used for testing and benchmarking the trained models.
35
+
36
+ ## Labels
37
+
38
+ Each training and test example is assigned to one of the following labels:
39
+
40
+ 0. T-shirt/top
41
+ 1. Trouser
42
+ 2. Pullover
43
+ 3. Dress
44
+ 4. Coat
45
+ 5. Sandal
46
+ 6. Shirt
47
+ 7. Sneaker
48
+ 8. Bag
49
+ 9. Ankle boot
50
+
51
+ ## Applications
52
+
53
+ The Fashion-MNIST dataset is widely used for training and evaluating deep learning models in image classification tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs), and various other machine learning algorithms. The dataset's simple and well-structured format makes it an essential resource for researchers and practitioners in the field of machine learning and computer vision.
54
+
55
+ ## Usage
56
+
57
+ To train a CNN model on the Fashion-MNIST dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 28x28, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
58
+
59
+ !!! example "Train Example"
60
+
61
+ === "Python"
62
+
63
+ ```python
64
+ from ultralytics import YOLO
65
+
66
+ # Load a model
67
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
68
+
69
+ # Train the model
70
+ results = model.train(data="fashion-mnist", epochs=100, imgsz=28)
71
+ ```
72
+
73
+ === "CLI"
74
+
75
+ ```bash
76
+ # Start training from a pretrained *.pt model
77
+ yolo classify train data=fashion-mnist model=yolo11n-cls.pt epochs=100 imgsz=28
78
+ ```
79
+
80
+ ## Sample Images and Annotations
81
+
82
+ The Fashion-MNIST dataset contains grayscale images of Zalando's article images, providing a well-structured dataset for image classification tasks. Here are some examples of images from the dataset:
83
+
84
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/fashion-mnist-sample.avif)
85
+
86
+ The example showcases the variety and complexity of the images in the Fashion-MNIST dataset, highlighting the importance of a diverse dataset for training robust image classification models.
87
+
88
+ ## Acknowledgments
89
+
90
+ If you use the Fashion-MNIST dataset in your research or development work, please acknowledge the dataset by linking to the [GitHub repository](https://github.com/zalandoresearch/fashion-mnist). This dataset was made available by Zalando Research.
91
+
92
+ ## FAQ
93
+
94
+ ### What is the Fashion-MNIST dataset and how is it different from MNIST?
95
+
96
+ The [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset is a collection of 70,000 grayscale images of Zalando's article images, intended as a modern replacement for the original MNIST dataset. It serves as a benchmark for machine learning models in the context of image classification tasks. Unlike MNIST, which contains handwritten digits, Fashion-MNIST consists of 28x28-pixel images categorized into 10 fashion-related classes, such as T-shirt/top, trouser, and ankle boot.
97
+
98
+ ### How can I train a YOLO model on the Fashion-MNIST dataset?
99
+
100
+ To train an Ultralytics YOLO model on the Fashion-MNIST dataset, you can use both Python and CLI commands. Here's a quick example to get you started:
101
+
102
+ !!! example "Train Example"
103
+
104
+ === "Python"
105
+
106
+ ```python
107
+ from ultralytics import YOLO
108
+
109
+ # Load a pretrained model
110
+ model = YOLO("yolo11n-cls.pt")
111
+
112
+ # Train the model on Fashion-MNIST
113
+ results = model.train(data="fashion-mnist", epochs=100, imgsz=28)
114
+ ```
115
+
116
+
117
+ === "CLI"
118
+
119
+ ```bash
120
+ yolo classify train data=fashion-mnist model=yolo11n-cls.pt epochs=100 imgsz=28
121
+ ```
122
+
123
+ For more detailed training parameters, refer to the [Training page](../../modes/train.md).
124
+
125
+ ### Why should I use the Fashion-MNIST dataset for benchmarking my machine learning models?
126
+
127
+ The [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist) dataset is widely recognized in the [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) community as a robust alternative to MNIST. It offers a more complex and varied set of images, making it an excellent choice for benchmarking image classification models. The dataset's structure, comprising 60,000 training images and 10,000 testing images, each labeled with one of 10 classes, makes it ideal for evaluating the performance of different machine learning algorithms in a more challenging context.
128
+
129
+ ### Can I use Ultralytics YOLO for image classification tasks like Fashion-MNIST?
130
+
131
+ Yes, Ultralytics YOLO models can be used for image classification tasks, including those involving the Fashion-MNIST dataset. YOLO11, for example, supports various vision tasks such as detection, segmentation, and classification. To get started with image classification tasks, refer to the [Classification page](https://docs.ultralytics.com/tasks/classify/).
132
+
133
+ ### What are the key features and structure of the Fashion-MNIST dataset?
134
+
135
+ The Fashion-MNIST dataset is divided into two main subsets: 60,000 training images and 10,000 testing images. Each image is a 28x28-pixel grayscale picture representing one of 10 fashion-related classes. The simplicity and well-structured format make it ideal for training and evaluating models in machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks. For more details on the dataset structure, see the [Dataset Structure section](#dataset-structure).
136
+
137
+ ### How can I acknowledge the use of the Fashion-MNIST dataset in my research?
138
+
139
+ If you utilize the Fashion-MNIST dataset in your research or development projects, it's important to acknowledge it by linking to the [GitHub repository](https://github.com/zalandoresearch/fashion-mnist). This helps in attributing the data to Zalando Research, who made the dataset available for public use.
docs/en/datasets/classify/imagenet.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the extensive ImageNet dataset and discover its role in advancing deep learning in computer vision. Access pretrained models and training examples.
4
+ keywords: ImageNet, deep learning, visual recognition, computer vision, pretrained models, YOLO, dataset, object detection, image classification
5
+ ---
6
+
7
+ # ImageNet Dataset
8
+
9
+ [ImageNet](https://www.image-net.org/) is a large-scale database of annotated images designed for use in visual object recognition research. It contains over 14 million images, with each image annotated using WordNet synsets, making it one of the most extensive resources available for training [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks.
10
+
11
+ ## ImageNet Pretrained Models
12
+
13
+ {% include "macros/yolo-cls-perf.md" %}
14
+
15
+ ## Key Features
16
+
17
+ - ImageNet contains over 14 million high-resolution images spanning thousands of object categories.
18
+ - The dataset is organized according to the WordNet hierarchy, with each synset representing a category.
19
+ - ImageNet is widely used for training and benchmarking in the field of computer vision, particularly for [image classification](https://www.ultralytics.com/glossary/image-classification) and [object detection](https://www.ultralytics.com/glossary/object-detection) tasks.
20
+ - The annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been instrumental in advancing computer vision research.
21
+
22
+ ## Dataset Structure
23
+
24
+ The ImageNet dataset is organized using the WordNet hierarchy. Each node in the hierarchy represents a category, and each category is described by a synset (a collection of synonymous terms). The images in ImageNet are annotated with one or more synsets, providing a rich resource for training models to recognize various objects and their relationships.
25
+
26
+ ## ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
27
+
28
+ The annual [ImageNet Large Scale Visual Recognition Challenge (ILSVRC)](https://image-net.org/challenges/LSVRC/) has been an important event in the field of computer vision. It has provided a platform for researchers and developers to evaluate their algorithms and models on a large-scale dataset with standardized evaluation metrics. The ILSVRC has led to significant advancements in the development of deep learning models for image classification, object detection, and other computer vision tasks.
29
+
30
+ ## Applications
31
+
32
+ The ImageNet dataset is widely used for training and evaluating deep learning models in various computer vision tasks, such as image classification, object detection, and object localization. Some popular deep learning architectures, such as AlexNet, VGG, and ResNet, were developed and benchmarked using the ImageNet dataset.
33
+
34
+ ## Usage
35
+
36
+ To train a deep learning model on the ImageNet dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
37
+
38
+ !!! example "Train Example"
39
+
40
+ === "Python"
41
+
42
+ ```python
43
+ from ultralytics import YOLO
44
+
45
+ # Load a model
46
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
47
+
48
+ # Train the model
49
+ results = model.train(data="imagenet", epochs=100, imgsz=224)
50
+ ```
51
+
52
+ === "CLI"
53
+
54
+ ```bash
55
+ # Start training from a pretrained *.pt model
56
+ yolo classify train data=imagenet model=yolo11n-cls.pt epochs=100 imgsz=224
57
+ ```
58
+
59
+ ## Sample Images and Annotations
60
+
61
+ The ImageNet dataset contains high-resolution images spanning thousands of object categories, providing a diverse and extensive dataset for training and evaluating computer vision models. Here are some examples of images from the dataset:
62
+
63
+ ![Dataset sample images](https://github.com/ultralytics/docs/releases/download/0/imagenet-sample-images.avif)
64
+
65
+ The example showcases the variety and complexity of the images in the ImageNet dataset, highlighting the importance of a diverse dataset for training robust computer vision models.
66
+
67
+ ## Citations and Acknowledgments
68
+
69
+ If you use the ImageNet dataset in your research or development work, please cite the following paper:
70
+
71
+ !!! quote ""
72
+
73
+ === "BibTeX"
74
+
75
+ ```bibtex
76
+ @article{ILSVRC15,
77
+ author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
78
+ title={ImageNet Large Scale Visual Recognition Challenge},
79
+ year={2015},
80
+ journal={International Journal of Computer Vision (IJCV)},
81
+ volume={115},
82
+ number={3},
83
+ pages={211-252}
84
+ }
85
+ ```
86
+
87
+ We would like to acknowledge the ImageNet team, led by Olga Russakovsky, Jia Deng, and Li Fei-Fei, for creating and maintaining the ImageNet dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision research community. For more information about the ImageNet dataset and its creators, visit the [ImageNet website](https://www.image-net.org/).
88
+
89
+ ## FAQ
90
+
91
+ ### What is the ImageNet dataset and how is it used in computer vision?
92
+
93
+ The [ImageNet dataset](https://www.image-net.org/) is a large-scale database consisting of over 14 million high-resolution images categorized using WordNet synsets. It is extensively used in visual object recognition research, including image classification and object detection. The dataset's annotations and sheer volume provide a rich resource for training deep learning models. Notably, models like AlexNet, VGG, and ResNet have been trained and benchmarked using ImageNet, showcasing its role in advancing computer vision.
94
+
95
+ ### How can I use a pretrained YOLO model for image classification on the ImageNet dataset?
96
+
97
+ To use a pretrained Ultralytics YOLO model for image classification on the ImageNet dataset, follow these steps:
98
+
99
+ !!! example "Train Example"
100
+
101
+ === "Python"
102
+
103
+ ```python
104
+ from ultralytics import YOLO
105
+
106
+ # Load a model
107
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
108
+
109
+ # Train the model
110
+ results = model.train(data="imagenet", epochs=100, imgsz=224)
111
+ ```
112
+
113
+ === "CLI"
114
+
115
+ ```bash
116
+ # Start training from a pretrained *.pt model
117
+ yolo classify train data=imagenet model=yolo11n-cls.pt epochs=100 imgsz=224
118
+ ```
119
+
120
+ For more in-depth training instruction, refer to our [Training page](../../modes/train.md).
121
+
122
+ ### Why should I use the Ultralytics YOLO11 pretrained models for my ImageNet dataset projects?
123
+
124
+ Ultralytics YOLO11 pretrained models offer state-of-the-art performance in terms of speed and [accuracy](https://www.ultralytics.com/glossary/accuracy) for various computer vision tasks. For example, the YOLO11n-cls model, with a top-1 accuracy of 69.0% and a top-5 accuracy of 88.3%, is optimized for real-time applications. Pretrained models reduce the computational resources required for training from scratch and accelerate development cycles. Learn more about the performance metrics of YOLO11 models in the [ImageNet Pretrained Models section](#imagenet-pretrained-models).
125
+
126
+ ### How is the ImageNet dataset structured, and why is it important?
127
+
128
+ The ImageNet dataset is organized using the WordNet hierarchy, where each node in the hierarchy represents a category described by a synset (a collection of synonymous terms). This structure allows for detailed annotations, making it ideal for training models to recognize a wide variety of objects. The diversity and annotation richness of ImageNet make it a valuable dataset for developing robust and generalizable deep learning models. More about this organization can be found in the [Dataset Structure](#dataset-structure) section.
129
+
130
+ ### What role does the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) play in computer vision?
131
+
132
+ The annual [ImageNet Large Scale Visual Recognition Challenge (ILSVRC)](https://image-net.org/challenges/LSVRC/) has been pivotal in driving advancements in computer vision by providing a competitive platform for evaluating algorithms on a large-scale, standardized dataset. It offers standardized evaluation metrics, fostering innovation and development in areas such as image classification, object detection, and [image segmentation](https://www.ultralytics.com/glossary/image-segmentation). The challenge has continuously pushed the boundaries of what is possible with deep learning and computer vision technologies.
docs/en/datasets/classify/imagenet10.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Discover ImageNet10 a compact version of ImageNet for rapid model testing and CI checks. Perfect for quick evaluations in computer vision tasks.
4
+ keywords: ImageNet10, ImageNet, Ultralytics, CI tests, sanity checks, training pipelines, computer vision, deep learning, dataset
5
+ ---
6
+
7
+ # ImageNet10 Dataset
8
+
9
+ The [ImageNet10](https://github.com/ultralytics/assets/releases/download/v0.0.0/imagenet10.zip) dataset is a small-scale subset of the [ImageNet](https://www.image-net.org/) database, developed by [Ultralytics](https://www.ultralytics.com/) and designed for CI tests, sanity checks, and fast testing of training pipelines. This dataset is composed of the first image in the training set and the first image from the validation set of the first 10 classes in ImageNet. Although significantly smaller, it retains the structure and diversity of the original ImageNet dataset.
10
+
11
+ ## Key Features
12
+
13
+ - ImageNet10 is a compact version of ImageNet, with 20 images representing the first 10 classes of the original dataset.
14
+ - The dataset is organized according to the WordNet hierarchy, mirroring the structure of the full ImageNet dataset.
15
+ - It is ideally suited for CI tests, sanity checks, and rapid testing of training pipelines in [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) tasks.
16
+ - Although not designed for model benchmarking, it can provide a quick indication of a model's basic functionality and correctness.
17
+
18
+ ## Dataset Structure
19
+
20
+ The ImageNet10 dataset, like the original ImageNet, is organized using the WordNet hierarchy. Each of the 10 classes in ImageNet10 is described by a synset (a collection of synonymous terms). The images in ImageNet10 are annotated with one or more synsets, providing a compact resource for testing models to recognize various objects and their relationships.
21
+
22
+ ## Applications
23
+
24
+ The ImageNet10 dataset is useful for quickly testing and debugging computer vision models and pipelines. Its small size allows for rapid iteration, making it ideal for continuous integration tests and sanity checks. It can also be used for fast preliminary testing of new models or changes to existing models before moving on to full-scale testing with the complete ImageNet dataset.
25
+
26
+ ## Usage
27
+
28
+ To test a deep learning model on the ImageNet10 dataset with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
29
+
30
+ !!! example "Test Example"
31
+
32
+ === "Python"
33
+
34
+ ```python
35
+ from ultralytics import YOLO
36
+
37
+ # Load a model
38
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
39
+
40
+ # Train the model
41
+ results = model.train(data="imagenet10", epochs=5, imgsz=224)
42
+ ```
43
+
44
+ === "CLI"
45
+
46
+ ```bash
47
+ # Start training from a pretrained *.pt model
48
+ yolo classify train data=imagenet10 model=yolo11n-cls.pt epochs=5 imgsz=224
49
+ ```
50
+
51
+ ## Sample Images and Annotations
52
+
53
+ The ImageNet10 dataset contains a subset of images from the original ImageNet dataset. These images are chosen to represent the first 10 classes in the dataset, providing a diverse yet compact dataset for quick testing and evaluation.
54
+
55
+ ![Dataset sample images](https://github.com/ultralytics/docs/releases/download/0/imagenet10-sample-images.avif) The example showcases the variety and complexity of the images in the ImageNet10 dataset, highlighting its usefulness for sanity checks and quick testing of computer vision models.
56
+
57
+ ## Citations and Acknowledgments
58
+
59
+ If you use the ImageNet10 dataset in your research or development work, please cite the original ImageNet paper:
60
+
61
+ !!! quote ""
62
+
63
+ === "BibTeX"
64
+
65
+ ```bibtex
66
+ @article{ILSVRC15,
67
+ author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
68
+ title={ImageNet Large Scale Visual Recognition Challenge},
69
+ year={2015},
70
+ journal={International Journal of Computer Vision (IJCV)},
71
+ volume={115},
72
+ number={3},
73
+ pages={211-252}
74
+ }
75
+ ```
76
+
77
+ We would like to acknowledge the ImageNet team, led by Olga Russakovsky, Jia Deng, and Li Fei-Fei, for creating and maintaining the ImageNet dataset. The ImageNet10 dataset, while a compact subset, is a valuable resource for quick testing and debugging in the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision research community. For more information about the ImageNet dataset and its creators, visit the [ImageNet website](https://www.image-net.org/).
78
+
79
+ ## FAQ
80
+
81
+ ### What is the ImageNet10 dataset and how is it different from the full ImageNet dataset?
82
+
83
+ The [ImageNet10](https://github.com/ultralytics/assets/releases/download/v0.0.0/imagenet10.zip) dataset is a compact subset of the original [ImageNet](https://www.image-net.org/) database, created by Ultralytics for rapid CI tests, sanity checks, and training pipeline evaluations. ImageNet10 comprises only 20 images, representing the first image in the training and validation sets of the first 10 classes in ImageNet. Despite its small size, it maintains the structure and diversity of the full dataset, making it ideal for quick testing but not for benchmarking models.
84
+
85
+ ### How can I use the ImageNet10 dataset to test my deep learning model?
86
+
87
+ To test your deep learning model on the ImageNet10 dataset with an image size of 224x224, use the following code snippets.
88
+
89
+ !!! example "Test Example"
90
+
91
+ === "Python"
92
+
93
+ ```python
94
+ from ultralytics import YOLO
95
+
96
+ # Load a model
97
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
98
+
99
+ # Train the model
100
+ results = model.train(data="imagenet10", epochs=5, imgsz=224)
101
+ ```
102
+
103
+ === "CLI"
104
+
105
+ ```bash
106
+ # Start training from a pretrained *.pt model
107
+ yolo classify train data=imagenet10 model=yolo11n-cls.pt epochs=5 imgsz=224
108
+ ```
109
+
110
+ Refer to the [Training](../../modes/train.md) page for a comprehensive list of available arguments.
111
+
112
+ ### Why should I use the ImageNet10 dataset for CI tests and sanity checks?
113
+
114
+ The ImageNet10 dataset is designed specifically for CI tests, sanity checks, and quick evaluations in [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) pipelines. Its small size allows for rapid iteration and testing, making it perfect for continuous integration processes where speed is crucial. By maintaining the structural complexity and diversity of the original ImageNet dataset, ImageNet10 provides a reliable indication of a model's basic functionality and correctness without the overhead of processing a large dataset.
115
+
116
+ ### What are the main features of the ImageNet10 dataset?
117
+
118
+ The ImageNet10 dataset has several key features:
119
+
120
+ - **Compact Size**: With only 20 images, it allows for rapid testing and debugging.
121
+ - **Structured Organization**: Follows the WordNet hierarchy, similar to the full ImageNet dataset.
122
+ - **CI and Sanity Checks**: Ideally suited for continuous integration tests and sanity checks.
123
+ - **Not for Benchmarking**: While useful for quick model evaluations, it is not designed for extensive benchmarking.
124
+
125
+ ### Where can I download the ImageNet10 dataset?
126
+
127
+ You can download the ImageNet10 dataset from the [Ultralytics GitHub releases page](https://github.com/ultralytics/assets/releases/download/v0.0.0/imagenet10.zip). For more detailed information about its structure and applications, refer to the [ImageNet10 Dataset](imagenet10.md) page.
docs/en/datasets/classify/imagenette.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the ImageNette dataset, a subset of ImageNet with 10 classes for efficient training and evaluation of image classification models. Ideal for ML and CV projects.
4
+ keywords: ImageNette dataset, ImageNet subset, image classification, machine learning, deep learning, YOLO, Convolutional Neural Networks, ML dataset, education, training
5
+ ---
6
+
7
+ # ImageNette Dataset
8
+
9
+ The [ImageNette](https://github.com/fastai/imagenette) dataset is a subset of the larger [Imagenet](https://www.image-net.org/) dataset, but it only includes 10 easily distinguishable classes. It was created to provide a quicker, easier-to-use version of Imagenet for software development and education.
10
+
11
+ ## Key Features
12
+
13
+ - ImageNette contains images from 10 different classes such as tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute.
14
+ - The dataset comprises colored images of varying dimensions.
15
+ - ImageNette is widely used for training and testing in the field of machine learning, especially for image classification tasks.
16
+
17
+ ## Dataset Structure
18
+
19
+ The ImageNette dataset is split into two subsets:
20
+
21
+ 1. **Training Set**: This subset contains several thousands of images used for training machine learning models. The exact number varies per class.
22
+ 2. **Validation Set**: This subset consists of several hundreds of images used for validating and benchmarking the trained models. Again, the exact number varies per class.
23
+
24
+ ## Applications
25
+
26
+ The ImageNette dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in image classification tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), and various other machine learning algorithms. The dataset's straightforward format and well-chosen classes make it a handy resource for both beginner and experienced practitioners in the field of machine learning and computer vision.
27
+
28
+ ## Usage
29
+
30
+ To train a model on the ImageNette dataset for 100 epochs with a standard image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
31
+
32
+ !!! example "Train Example"
33
+
34
+ === "Python"
35
+
36
+ ```python
37
+ from ultralytics import YOLO
38
+
39
+ # Load a model
40
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
41
+
42
+ # Train the model
43
+ results = model.train(data="imagenette", epochs=100, imgsz=224)
44
+ ```
45
+
46
+ === "CLI"
47
+
48
+ ```bash
49
+ # Start training from a pretrained *.pt model
50
+ yolo classify train data=imagenette model=yolo11n-cls.pt epochs=100 imgsz=224
51
+ ```
52
+
53
+ ## Sample Images and Annotations
54
+
55
+ The ImageNette dataset contains colored images of various objects and scenes, providing a diverse dataset for [image classification](https://www.ultralytics.com/glossary/image-classification) tasks. Here are some examples of images from the dataset:
56
+
57
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/imagenette-sample-image.avif)
58
+
59
+ The example showcases the variety and complexity of the images in the ImageNette dataset, highlighting the importance of a diverse dataset for training robust image classification models.
60
+
61
+ ## ImageNette160 and ImageNette320
62
+
63
+ For faster prototyping and training, the ImageNette dataset is also available in two reduced sizes: ImageNette160 and ImageNette320. These datasets maintain the same classes and structure as the full ImageNette dataset, but the images are resized to a smaller dimension. As such, these versions of the dataset are particularly useful for preliminary model testing, or when computational resources are limited.
64
+
65
+ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imagenette320' in the training command. The following code snippets illustrate this:
66
+
67
+ !!! example "Train Example with ImageNette160"
68
+
69
+ === "Python"
70
+
71
+ ```python
72
+ from ultralytics import YOLO
73
+
74
+ # Load a model
75
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
76
+
77
+ # Train the model with ImageNette160
78
+ results = model.train(data="imagenette160", epochs=100, imgsz=160)
79
+ ```
80
+
81
+ === "CLI"
82
+
83
+ ```bash
84
+ # Start training from a pretrained *.pt model with ImageNette160
85
+ yolo classify train data=imagenette160 model=yolo11n-cls.pt epochs=100 imgsz=160
86
+ ```
87
+
88
+ !!! example "Train Example with ImageNette320"
89
+
90
+ === "Python"
91
+
92
+ ```python
93
+ from ultralytics import YOLO
94
+
95
+ # Load a model
96
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
97
+
98
+ # Train the model with ImageNette320
99
+ results = model.train(data="imagenette320", epochs=100, imgsz=320)
100
+ ```
101
+
102
+ === "CLI"
103
+
104
+ ```bash
105
+ # Start training from a pretrained *.pt model with ImageNette320
106
+ yolo classify train data=imagenette320 model=yolo11n-cls.pt epochs=100 imgsz=320
107
+ ```
108
+
109
+ These smaller versions of the dataset allow for rapid iterations during the development process while still providing valuable and realistic image classification tasks.
110
+
111
+ ## Citations and Acknowledgments
112
+
113
+ If you use the ImageNette dataset in your research or development work, please acknowledge it appropriately. For more information about the ImageNette dataset, visit the [ImageNette dataset GitHub page](https://github.com/fastai/imagenette).
114
+
115
+ ## FAQ
116
+
117
+ ### What is the ImageNette dataset?
118
+
119
+ The [ImageNette dataset](https://github.com/fastai/imagenette) is a simplified subset of the larger [ImageNet dataset](https://www.image-net.org/), featuring only 10 easily distinguishable classes such as tench, English springer, and French horn. It was created to offer a more manageable dataset for efficient training and evaluation of image classification models. This dataset is particularly useful for quick software development and educational purposes in [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and computer vision.
120
+
121
+ ### How can I use the ImageNette dataset for training a YOLO model?
122
+
123
+ To train a YOLO model on the ImageNette dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch), you can use the following commands. Make sure to have the Ultralytics YOLO environment set up.
124
+
125
+ !!! example "Train Example"
126
+
127
+ === "Python"
128
+
129
+ ```python
130
+ from ultralytics import YOLO
131
+
132
+ # Load a model
133
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
134
+
135
+ # Train the model
136
+ results = model.train(data="imagenette", epochs=100, imgsz=224)
137
+ ```
138
+
139
+ === "CLI"
140
+
141
+ ```bash
142
+ # Start training from a pretrained *.pt model
143
+ yolo classify train data=imagenette model=yolo11n-cls.pt epochs=100 imgsz=224
144
+ ```
145
+
146
+ For more details, see the [Training](../../modes/train.md) documentation page.
147
+
148
+ ### Why should I use ImageNette for image classification tasks?
149
+
150
+ The ImageNette dataset is advantageous for several reasons:
151
+
152
+ - **Quick and Simple**: It contains only 10 classes, making it less complex and time-consuming compared to larger datasets.
153
+ - **Educational Use**: Ideal for learning and teaching the basics of image classification since it requires less computational power and time.
154
+ - **Versatility**: Widely used to train and benchmark various machine learning models, especially in image classification.
155
+
156
+ For more details on model training and dataset management, explore the [Dataset Structure](#dataset-structure) section.
157
+
158
+ ### Can the ImageNette dataset be used with different image sizes?
159
+
160
+ Yes, the ImageNette dataset is also available in two resized versions: ImageNette160 and ImageNette320. These versions help in faster prototyping and are especially useful when computational resources are limited.
161
+
162
+ !!! example "Train Example with ImageNette160"
163
+
164
+ === "Python"
165
+
166
+ ```python
167
+ from ultralytics import YOLO
168
+
169
+ # Load a model
170
+ model = YOLO("yolo11n-cls.pt")
171
+
172
+ # Train the model with ImageNette160
173
+ results = model.train(data="imagenette160", epochs=100, imgsz=160)
174
+ ```
175
+
176
+ === "CLI"
177
+
178
+ ```bash
179
+ # Start training from a pretrained *.pt model with ImageNette160
180
+ yolo detect train data=imagenette160 model=yolo11n-cls.pt epochs=100 imgsz=160
181
+ ```
182
+
183
+ For more information, refer to [Training with ImageNette160 and ImageNette320](#imagenette160-and-imagenette320).
184
+
185
+ ### What are some practical applications of the ImageNette dataset?
186
+
187
+ The ImageNette dataset is extensively used in:
188
+
189
+ - **Educational Settings**: To educate beginners in machine learning and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv).
190
+ - **Software Development**: For rapid prototyping and development of image classification models.
191
+ - **Deep Learning Research**: To evaluate and benchmark the performance of various deep learning models, especially Convolutional [Neural Networks](https://www.ultralytics.com/glossary/neural-network-nn) (CNNs).
192
+
193
+ Explore the [Applications](#applications) section for detailed use cases.
docs/en/datasets/classify/imagewoof.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the ImageWoof dataset, a challenging subset of ImageNet focusing on 10 dog breeds, designed to enhance image classification models. Learn more on Ultralytics Docs.
4
+ keywords: ImageWoof dataset, ImageNet subset, dog breeds, image classification, deep learning, machine learning, Ultralytics, training dataset, noisy labels
5
+ ---
6
+
7
+ # ImageWoof Dataset
8
+
9
+ The [ImageWoof](https://github.com/fastai/imagenette) dataset is a subset of the ImageNet consisting of 10 classes that are challenging to classify, since they're all dog breeds. It was created as a more difficult task for [image classification](https://www.ultralytics.com/glossary/image-classification) algorithms to solve, aiming at encouraging development of more advanced models.
10
+
11
+ ## Key Features
12
+
13
+ - ImageWoof contains images of 10 different dog breeds: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, and Old English sheepdog.
14
+ - The dataset provides images at various resolutions (full size, 320px, 160px), accommodating for different computational capabilities and research needs.
15
+ - It also includes a version with noisy labels, providing a more realistic scenario where labels might not always be reliable.
16
+
17
+ ## Dataset Structure
18
+
19
+ The ImageWoof dataset structure is based on the dog breed classes, with each breed having its own directory of images.
20
+
21
+ ## Applications
22
+
23
+ The ImageWoof dataset is widely used for training and evaluating deep learning models in image classification tasks, especially when it comes to more complex and similar classes. The dataset's challenge lies in the subtle differences between the dog breeds, pushing the limits of model's performance and generalization.
24
+
25
+ ## Usage
26
+
27
+ To train a CNN model on the ImageWoof dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
28
+
29
+ !!! example "Train Example"
30
+
31
+ === "Python"
32
+
33
+ ```python
34
+ from ultralytics import YOLO
35
+
36
+ # Load a model
37
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
38
+
39
+ # Train the model
40
+ results = model.train(data="imagewoof", epochs=100, imgsz=224)
41
+ ```
42
+
43
+ === "CLI"
44
+
45
+ ```bash
46
+ # Start training from a pretrained *.pt model
47
+ yolo classify train data=imagewoof model=yolo11n-cls.pt epochs=100 imgsz=224
48
+ ```
49
+
50
+ ## Dataset Variants
51
+
52
+ ImageWoof dataset comes in three different sizes to accommodate various research needs and computational capabilities:
53
+
54
+ 1. **Full Size (imagewoof)**: This is the original version of the ImageWoof dataset. It contains full-sized images and is ideal for final training and performance benchmarking.
55
+
56
+ 2. **Medium Size (imagewoof320)**: This version contains images resized to have a maximum edge length of 320 pixels. It's suitable for faster training without significantly sacrificing model performance.
57
+
58
+ 3. **Small Size (imagewoof160)**: This version contains images resized to have a maximum edge length of 160 pixels. It's designed for rapid prototyping and experimentation where training speed is a priority.
59
+
60
+ To use these variants in your training, simply replace 'imagewoof' in the dataset argument with 'imagewoof320' or 'imagewoof160'. For example:
61
+
62
+ !!! example
63
+
64
+ === "Python"
65
+
66
+ ```python
67
+ from ultralytics import YOLO
68
+
69
+ # Load a model
70
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
71
+
72
+ # For medium-sized dataset
73
+ model.train(data="imagewoof320", epochs=100, imgsz=224)
74
+
75
+ # For small-sized dataset
76
+ model.train(data="imagewoof160", epochs=100, imgsz=224)
77
+ ```
78
+
79
+ === "CLI"
80
+
81
+ ```bash
82
+ # Load a pretrained model and train on the small-sized dataset
83
+ yolo classify train model=yolo11n-cls.pt data=imagewoof320 epochs=100 imgsz=224
84
+ ```
85
+
86
+ It's important to note that using smaller images will likely yield lower performance in terms of classification accuracy. However, it's an excellent way to iterate quickly in the early stages of model development and prototyping.
87
+
88
+ ## Sample Images and Annotations
89
+
90
+ The ImageWoof dataset contains colorful images of various dog breeds, providing a challenging dataset for image classification tasks. Here are some examples of images from the dataset:
91
+
92
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/imagewoof-dataset-sample.avif)
93
+
94
+ The example showcases the subtle differences and similarities among the different dog breeds in the ImageWoof dataset, highlighting the complexity and difficulty of the classification task.
95
+
96
+ ## Citations and Acknowledgments
97
+
98
+ If you use the ImageWoof dataset in your research or development work, please make sure to acknowledge the creators of the dataset by linking to the [official dataset repository](https://github.com/fastai/imagenette).
99
+
100
+ We would like to acknowledge the FastAI team for creating and maintaining the ImageWoof dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) research community. For more information about the ImageWoof dataset, visit the [ImageWoof dataset repository](https://github.com/fastai/imagenette).
101
+
102
+ ## FAQ
103
+
104
+ ### What is the ImageWoof dataset in Ultralytics?
105
+
106
+ The [ImageWoof](https://github.com/fastai/imagenette) dataset is a challenging subset of ImageNet focusing on 10 specific dog breeds. Created to push the limits of image classification models, it features breeds like Beagle, Shih-Tzu, and Golden Retriever. The dataset includes images at various resolutions (full size, 320px, 160px) and even noisy labels for more realistic training scenarios. This complexity makes ImageWoof ideal for developing more advanced deep learning models.
107
+
108
+ ### How can I train a model using the ImageWoof dataset with Ultralytics YOLO?
109
+
110
+ To train a [Convolutional Neural Network](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNN) model on the ImageWoof dataset using Ultralytics YOLO for 100 epochs at an image size of 224x224, you can use the following code:
111
+
112
+ !!! example "Train Example"
113
+
114
+ === "Python"
115
+
116
+ ```python
117
+ from ultralytics import YOLO
118
+
119
+ model = YOLO("yolo11n-cls.pt") # Load a pretrained model
120
+ results = model.train(data="imagewoof", epochs=100, imgsz=224)
121
+ ```
122
+
123
+
124
+ === "CLI"
125
+
126
+ ```bash
127
+ yolo classify train data=imagewoof model=yolo11n-cls.pt epochs=100 imgsz=224
128
+ ```
129
+
130
+ For more details on available training arguments, refer to the [Training](../../modes/train.md) page.
131
+
132
+ ### What versions of the ImageWoof dataset are available?
133
+
134
+ The ImageWoof dataset comes in three sizes:
135
+
136
+ 1. **Full Size (imagewoof)**: Ideal for final training and benchmarking, containing full-sized images.
137
+ 2. **Medium Size (imagewoof320)**: Resized images with a maximum edge length of 320 pixels, suited for faster training.
138
+ 3. **Small Size (imagewoof160)**: Resized images with a maximum edge length of 160 pixels, perfect for rapid prototyping.
139
+
140
+ Use these versions by replacing 'imagewoof' in the dataset argument accordingly. Note, however, that smaller images may yield lower classification [accuracy](https://www.ultralytics.com/glossary/accuracy) but can be useful for quicker iterations.
141
+
142
+ ### How do noisy labels in the ImageWoof dataset benefit training?
143
+
144
+ Noisy labels in the ImageWoof dataset simulate real-world conditions where labels might not always be accurate. Training models with this data helps develop robustness and generalization in image classification tasks. This prepares the models to handle ambiguous or mislabeled data effectively, which is often encountered in practical applications.
145
+
146
+ ### What are the key challenges of using the ImageWoof dataset?
147
+
148
+ The primary challenge of the ImageWoof dataset lies in the subtle differences among the dog breeds it includes. Since it focuses on 10 closely related breeds, distinguishing between them requires more advanced and fine-tuned image classification models. This makes ImageWoof an excellent benchmark to test the capabilities and improvements of [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models.
docs/en/datasets/classify/index.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Learn how to structure datasets for YOLO classification tasks. Detailed folder structure and usage examples for effective training.
4
+ keywords: YOLO, image classification, dataset structure, CIFAR-10, Ultralytics, machine learning, training data, model evaluation
5
+ ---
6
+
7
+ # Image Classification Datasets Overview
8
+
9
+ ### Dataset Structure for YOLO Classification Tasks
10
+
11
+ For [Ultralytics](https://www.ultralytics.com/) YOLO classification tasks, the dataset must be organized in a specific split-directory structure under the `root` directory to facilitate proper training, testing, and optional validation processes. This structure includes separate directories for training (`train`) and testing (`test`) phases, with an optional directory for validation (`val`).
12
+
13
+ Each of these directories should contain one subdirectory for each class in the dataset. The subdirectories are named after the corresponding class and contain all the images for that class. Ensure that each image file is named uniquely and stored in a common format such as JPEG or PNG.
14
+
15
+ **Folder Structure Example**
16
+
17
+ Consider the CIFAR-10 dataset as an example. The folder structure should look like this:
18
+
19
+ ```
20
+ cifar-10-/
21
+ |
22
+ |-- train/
23
+ | |-- airplane/
24
+ | | |-- 10008_airplane.png
25
+ | | |-- 10009_airplane.png
26
+ | | |-- ...
27
+ | |
28
+ | |-- automobile/
29
+ | | |-- 1000_automobile.png
30
+ | | |-- 1001_automobile.png
31
+ | | |-- ...
32
+ | |
33
+ | |-- bird/
34
+ | | |-- 10014_bird.png
35
+ | | |-- 10015_bird.png
36
+ | | |-- ...
37
+ | |
38
+ | |-- ...
39
+ |
40
+ |-- test/
41
+ | |-- airplane/
42
+ | | |-- 10_airplane.png
43
+ | | |-- 11_airplane.png
44
+ | | |-- ...
45
+ | |
46
+ | |-- automobile/
47
+ | | |-- 100_automobile.png
48
+ | | |-- 101_automobile.png
49
+ | | |-- ...
50
+ | |
51
+ | |-- bird/
52
+ | | |-- 1000_bird.png
53
+ | | |-- 1001_bird.png
54
+ | | |-- ...
55
+ | |
56
+ | |-- ...
57
+ |
58
+ |-- val/ (optional)
59
+ | |-- airplane/
60
+ | | |-- 105_airplane.png
61
+ | | |-- 106_airplane.png
62
+ | | |-- ...
63
+ | |
64
+ | |-- automobile/
65
+ | | |-- 102_automobile.png
66
+ | | |-- 103_automobile.png
67
+ | | |-- ...
68
+ | |
69
+ | |-- bird/
70
+ | | |-- 1045_bird.png
71
+ | | |-- 1046_bird.png
72
+ | | |-- ...
73
+ | |
74
+ | |-- ...
75
+ ```
76
+
77
+ This structured approach ensures that the model can effectively learn from well-organized classes during the training phase and accurately evaluate performance during testing and validation phases.
78
+
79
+ ## Usage
80
+
81
+ !!! example
82
+
83
+ === "Python"
84
+
85
+ ```python
86
+ from ultralytics import YOLO
87
+
88
+ # Load a model
89
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
90
+
91
+ # Train the model
92
+ results = model.train(data="path/to/dataset", epochs=100, imgsz=640)
93
+ ```
94
+
95
+ === "CLI"
96
+
97
+ ```bash
98
+ # Start training from a pretrained *.pt model
99
+ yolo detect train data=path/to/data model=yolo11n-cls.pt epochs=100 imgsz=640
100
+ ```
101
+
102
+ ## Supported Datasets
103
+
104
+ Ultralytics supports the following datasets with automatic download:
105
+
106
+ - [Caltech 101](caltech101.md): A dataset containing images of 101 object categories for [image classification](https://www.ultralytics.com/glossary/image-classification) tasks.
107
+ - [Caltech 256](caltech256.md): An extended version of Caltech 101 with 256 object categories and more challenging images.
108
+ - [CIFAR-10](cifar10.md): A dataset of 60K 32x32 color images in 10 classes, with 6K images per class.
109
+ - [CIFAR-100](cifar100.md): An extended version of CIFAR-10 with 100 object categories and 600 images per class.
110
+ - [Fashion-MNIST](fashion-mnist.md): A dataset consisting of 70,000 grayscale images of 10 fashion categories for image classification tasks.
111
+ - [ImageNet](imagenet.md): A large-scale dataset for [object detection](https://www.ultralytics.com/glossary/object-detection) and image classification with over 14 million images and 20,000 categories.
112
+ - [ImageNet-10](imagenet10.md): A smaller subset of ImageNet with 10 categories for faster experimentation and testing.
113
+ - [Imagenette](imagenette.md): A smaller subset of ImageNet that contains 10 easily distinguishable classes for quicker training and testing.
114
+ - [Imagewoof](imagewoof.md): A more challenging subset of ImageNet containing 10 dog breed categories for image classification tasks.
115
+ - [MNIST](mnist.md): A dataset of 70,000 grayscale images of handwritten digits for image classification tasks.
116
+ - [MNIST160](mnist.md): First 8 images of each MNIST category from the MNIST dataset. Dataset contains 160 images total.
117
+
118
+ ### Adding your own dataset
119
+
120
+ If you have your own dataset and would like to use it for training classification models with Ultralytics, ensure that it follows the format specified above under "Dataset format" and then point your `data` argument to the dataset directory.
121
+
122
+ ## FAQ
123
+
124
+ ### How do I structure my dataset for YOLO classification tasks?
125
+
126
+ To structure your dataset for Ultralytics YOLO classification tasks, you should follow a specific split-directory format. Organize your dataset into separate directories for `train`, `test`, and optionally `val`. Each of these directories should contain subdirectories named after each class, with the corresponding images inside. This facilitates smooth training and evaluation processes. For an example, consider the CIFAR-10 dataset format:
127
+
128
+ ```
129
+ cifar-10-/
130
+ |-- train/
131
+ | |-- airplane/
132
+ | |-- automobile/
133
+ | |-- bird/
134
+ | ...
135
+ |-- test/
136
+ | |-- airplane/
137
+ | |-- automobile/
138
+ | |-- bird/
139
+ | ...
140
+ |-- val/ (optional)
141
+ | |-- airplane/
142
+ | |-- automobile/
143
+ | |-- bird/
144
+ | ...
145
+ ```
146
+
147
+ For more details, visit [Dataset Structure for YOLO Classification Tasks](#dataset-structure-for-yolo-classification-tasks).
148
+
149
+ ### What datasets are supported by Ultralytics YOLO for image classification?
150
+
151
+ Ultralytics YOLO supports automatic downloading of several datasets for image classification, including:
152
+
153
+ - [Caltech 101](caltech101.md)
154
+ - [Caltech 256](caltech256.md)
155
+ - [CIFAR-10](cifar10.md)
156
+ - [CIFAR-100](cifar100.md)
157
+ - [Fashion-MNIST](fashion-mnist.md)
158
+ - [ImageNet](imagenet.md)
159
+ - [ImageNet-10](imagenet10.md)
160
+ - [Imagenette](imagenette.md)
161
+ - [Imagewoof](imagewoof.md)
162
+ - [MNIST](mnist.md)
163
+
164
+ These datasets are structured in a way that makes them easy to use with YOLO. Each dataset's page provides further details about its structure and applications.
165
+
166
+ ### How do I add my own dataset for YOLO image classification?
167
+
168
+ To use your own dataset with Ultralytics YOLO, ensure it follows the specified directory format required for the classification task, with separate `train`, `test`, and optionally `val` directories, and subdirectories for each class containing the respective images. Once your dataset is structured correctly, point the `data` argument to your dataset's root directory when initializing the training script. Here's an example in Python:
169
+
170
+ ```python
171
+ from ultralytics import YOLO
172
+
173
+ # Load a model
174
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
175
+
176
+ # Train the model
177
+ results = model.train(data="path/to/your/dataset", epochs=100, imgsz=640)
178
+ ```
179
+
180
+ More details can be found in the [Adding your own dataset](#adding-your-own-dataset) section.
181
+
182
+ ### Why should I use Ultralytics YOLO for image classification?
183
+
184
+ Ultralytics YOLO offers several benefits for image classification, including:
185
+
186
+ - **Pretrained Models**: Load pretrained models like `yolo11n-cls.pt` to jump-start your training process.
187
+ - **Ease of Use**: Simple API and CLI commands for training and evaluation.
188
+ - **High Performance**: State-of-the-art [accuracy](https://www.ultralytics.com/glossary/accuracy) and speed, ideal for real-time applications.
189
+ - **Support for Multiple Datasets**: Seamless integration with various popular datasets like CIFAR-10, ImageNet, and more.
190
+ - **Community and Support**: Access to extensive documentation and an active community for troubleshooting and improvements.
191
+
192
+ For additional insights and real-world applications, you can explore [Ultralytics YOLO](https://www.ultralytics.com/yolo).
193
+
194
+ ### How can I train a model using Ultralytics YOLO?
195
+
196
+ Training a model using Ultralytics YOLO can be done easily in both Python and CLI. Here's an example:
197
+
198
+ !!! example
199
+
200
+ === "Python"
201
+
202
+ ```python
203
+ from ultralytics import YOLO
204
+
205
+ # Load a model
206
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model
207
+
208
+ # Train the model
209
+ results = model.train(data="path/to/dataset", epochs=100, imgsz=640)
210
+ ```
211
+
212
+
213
+ === "CLI"
214
+
215
+ ```bash
216
+ # Start training from a pretrained *.pt model
217
+ yolo detect train data=path/to/data model=yolo11n-cls.pt epochs=100 imgsz=640
218
+ ```
219
+
220
+ These examples demonstrate the straightforward process of training a YOLO model using either approach. For more information, visit the [Usage](#usage) section.
docs/en/datasets/classify/mnist.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the MNIST dataset, a cornerstone in machine learning for handwritten digit recognition. Learn about its structure, features, and applications.
4
+ keywords: MNIST, dataset, handwritten digits, image classification, deep learning, machine learning, training set, testing set, NIST
5
+ ---
6
+
7
+ # MNIST Dataset
8
+
9
+ The [MNIST](http://yann.lecun.com/exdb/mnist/) (Modified National Institute of Standards and Technology) dataset is a large database of handwritten digits that is commonly used for training various image processing systems and machine learning models. It was created by "re-mixing" the samples from NIST's original datasets and has become a benchmark for evaluating the performance of image classification algorithms.
10
+
11
+ ## Key Features
12
+
13
+ - MNIST contains 60,000 training images and 10,000 testing images of handwritten digits.
14
+ - The dataset comprises grayscale images of size 28x28 pixels.
15
+ - The images are normalized to fit into a 28x28 pixel [bounding box](https://www.ultralytics.com/glossary/bounding-box) and anti-aliased, introducing grayscale levels.
16
+ - MNIST is widely used for training and testing in the field of machine learning, especially for image classification tasks.
17
+
18
+ ## Dataset Structure
19
+
20
+ The MNIST dataset is split into two subsets:
21
+
22
+ 1. **Training Set**: This subset contains 60,000 images of handwritten digits used for training machine learning models.
23
+ 2. **Testing Set**: This subset consists of 10,000 images used for testing and benchmarking the trained models.
24
+
25
+ ## Extended MNIST (EMNIST)
26
+
27
+ Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the successor to MNIST. While MNIST included images only of handwritten digits, EMNIST includes all the images from NIST Special Database 19, which is a large database of handwritten uppercase and lowercase letters as well as digits. The images in EMNIST were converted into the same 28x28 pixel format, by the same process, as were the MNIST images. Accordingly, tools that work with the older, smaller MNIST dataset will likely work unmodified with EMNIST.
28
+
29
+ ## Applications
30
+
31
+ The MNIST dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in image classification tasks, such as [Convolutional Neural Networks](https://www.ultralytics.com/glossary/convolutional-neural-network-cnn) (CNNs), [Support Vector Machines](https://www.ultralytics.com/glossary/support-vector-machine-svm) (SVMs), and various other machine learning algorithms. The dataset's simple and well-structured format makes it an essential resource for researchers and practitioners in the field of machine learning and computer vision.
32
+
33
+ ## Usage
34
+
35
+ To train a CNN model on the MNIST dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 32x32, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
36
+
37
+ !!! example "Train Example"
38
+
39
+ === "Python"
40
+
41
+ ```python
42
+ from ultralytics import YOLO
43
+
44
+ # Load a model
45
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
46
+
47
+ # Train the model
48
+ results = model.train(data="mnist", epochs=100, imgsz=32)
49
+ ```
50
+
51
+ === "CLI"
52
+
53
+ ```bash
54
+ # Start training from a pretrained *.pt model
55
+ yolo classify train data=mnist model=yolo11n-cls.pt epochs=100 imgsz=28
56
+ ```
57
+
58
+ ## Sample Images and Annotations
59
+
60
+ The MNIST dataset contains grayscale images of handwritten digits, providing a well-structured dataset for [image classification](https://www.ultralytics.com/glossary/image-classification) tasks. Here are some examples of images from the dataset:
61
+
62
+ ![Dataset sample image](https://upload.wikimedia.org/wikipedia/commons/2/27/MnistExamples.png)
63
+
64
+ The example showcases the variety and complexity of the handwritten digits in the MNIST dataset, highlighting the importance of a diverse dataset for training robust image classification models.
65
+
66
+ ## Citations and Acknowledgments
67
+
68
+ If you use the MNIST dataset in your
69
+
70
+ research or development work, please cite the following paper:
71
+
72
+ !!! quote ""
73
+
74
+ === "BibTeX"
75
+
76
+ ```bibtex
77
+ @article{lecun2010mnist,
78
+ title={MNIST handwritten digit database},
79
+ author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
80
+ journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
81
+ volume={2},
82
+ year={2010}
83
+ }
84
+ ```
85
+
86
+ We would like to acknowledge Yann LeCun, Corinna Cortes, and Christopher J.C. Burges for creating and maintaining the MNIST dataset as a valuable resource for the [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) and [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) research community. For more information about the MNIST dataset and its creators, visit the [MNIST dataset website](http://yann.lecun.com/exdb/mnist/).
87
+
88
+ ## FAQ
89
+
90
+ ### What is the MNIST dataset, and why is it important in machine learning?
91
+
92
+ The [MNIST](http://yann.lecun.com/exdb/mnist/) dataset, or Modified National Institute of Standards and Technology dataset, is a widely-used collection of handwritten digits designed for training and testing image classification systems. It includes 60,000 training images and 10,000 testing images, all of which are grayscale and 28x28 pixels in size. The dataset's importance lies in its role as a standard benchmark for evaluating image classification algorithms, helping researchers and engineers to compare methods and track progress in the field.
93
+
94
+ ### How can I use Ultralytics YOLO to train a model on the MNIST dataset?
95
+
96
+ To train a model on the MNIST dataset using Ultralytics YOLO, you can follow these steps:
97
+
98
+ !!! example "Train Example"
99
+
100
+ === "Python"
101
+
102
+ ```python
103
+ from ultralytics import YOLO
104
+
105
+ # Load a model
106
+ model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
107
+
108
+ # Train the model
109
+ results = model.train(data="mnist", epochs=100, imgsz=32)
110
+ ```
111
+
112
+ === "CLI"
113
+
114
+ ```bash
115
+ # Start training from a pretrained *.pt model
116
+ yolo classify train data=mnist model=yolo11n-cls.pt epochs=100 imgsz=28
117
+ ```
118
+
119
+ For a detailed list of available training arguments, refer to the [Training](../../modes/train.md) page.
120
+
121
+ ### What is the difference between the MNIST and EMNIST datasets?
122
+
123
+ The MNIST dataset contains only handwritten digits, whereas the Extended MNIST (EMNIST) dataset includes both digits and uppercase and lowercase letters. EMNIST was developed as a successor to MNIST and utilizes the same 28x28 pixel format for the images, making it compatible with tools and models designed for the original MNIST dataset. This broader range of characters in EMNIST makes it useful for a wider variety of machine learning applications.
124
+
125
+ ### Can I use Ultralytics HUB to train models on custom datasets like MNIST?
126
+
127
+ Yes, you can use Ultralytics HUB to train models on custom datasets like MNIST. Ultralytics HUB offers a user-friendly interface for uploading datasets, training models, and managing projects without needing extensive coding knowledge. For more details on how to get started, check out the [Ultralytics HUB Quickstart](https://docs.ultralytics.com/hub/quickstart/) page.
docs/en/datasets/detect/african-wildlife.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore our African Wildlife Dataset featuring images of buffalo, elephant, rhino, and zebra for training computer vision models. Ideal for research and conservation.
4
+ keywords: African Wildlife Dataset, South African animals, object detection, computer vision, YOLO11, wildlife research, conservation, dataset
5
+ ---
6
+
7
+ # African Wildlife Dataset
8
+
9
+ This dataset showcases four common animal classes typically found in South African nature reserves. It includes images of African wildlife such as buffalo, elephant, rhino, and zebra, providing valuable insights into their characteristics. Essential for training [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) algorithms, this dataset aids in identifying animals in various habitats, from zoos to forests, and supports wildlife research.
10
+
11
+ <p align="center">
12
+ <br>
13
+ <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/biIW5Z6GYl0"
14
+ title="YouTube video player" frameborder="0"
15
+ allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
16
+ allowfullscreen>
17
+ </iframe>
18
+ <br>
19
+ <strong>Watch:</strong> African Wildlife Animals Detection using Ultralytics YOLO11
20
+ </p>
21
+
22
+ ## Dataset Structure
23
+
24
+ The African wildlife objects detection dataset is split into three subsets:
25
+
26
+ - **Training set**: Contains 1052 images, each with corresponding annotations.
27
+ - **Validation set**: Includes 225 images, each with paired annotations.
28
+ - **Testing set**: Comprises 227 images, each with paired annotations.
29
+
30
+ ## Applications
31
+
32
+ This dataset can be applied in various computer vision tasks such as [object detection](https://www.ultralytics.com/glossary/object-detection), object tracking, and research. Specifically, it can be used to train and evaluate models for identifying African wildlife objects in images, which can have applications in wildlife conservation, ecological research, and monitoring efforts in natural reserves and protected areas. Additionally, it can serve as a valuable resource for educational purposes, enabling students and researchers to study and understand the characteristics and behaviors of different animal species.
33
+
34
+ ## Dataset YAML
35
+
36
+ A YAML (Yet Another Markup Language) file defines the dataset configuration, including paths, classes, and other pertinent details. For the African wildlife dataset, the `african-wildlife.yaml` file is located at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml).
37
+
38
+ !!! example "ultralytics/cfg/datasets/african-wildlife.yaml"
39
+
40
+ ```yaml
41
+ --8<-- "ultralytics/cfg/datasets/african-wildlife.yaml"
42
+ ```
43
+
44
+ ## Usage
45
+
46
+ To train a YOLO11n model on the African wildlife dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
47
+
48
+ !!! example "Train Example"
49
+
50
+ === "Python"
51
+
52
+ ```python
53
+ from ultralytics import YOLO
54
+
55
+ # Load a model
56
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
57
+
58
+ # Train the model
59
+ results = model.train(data="african-wildlife.yaml", epochs=100, imgsz=640)
60
+ ```
61
+
62
+ === "CLI"
63
+
64
+ ```bash
65
+ # Start training from a pretrained *.pt model
66
+ yolo detect train data=african-wildlife.yaml model=yolo11n.pt epochs=100 imgsz=640
67
+ ```
68
+
69
+ !!! example "Inference Example"
70
+
71
+ === "Python"
72
+
73
+ ```python
74
+ from ultralytics import YOLO
75
+
76
+ # Load a model
77
+ model = YOLO("path/to/best.pt") # load a brain-tumor fine-tuned model
78
+
79
+ # Inference using the model
80
+ results = model.predict("https://ultralytics.com/assets/african-wildlife-sample.jpg")
81
+ ```
82
+
83
+ === "CLI"
84
+
85
+ ```bash
86
+ # Start prediction with a finetuned *.pt model
87
+ yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/african-wildlife-sample.jpg"
88
+ ```
89
+
90
+ ## Sample Images and Annotations
91
+
92
+ The African wildlife dataset comprises a wide variety of images showcasing diverse animal species and their natural habitats. Below are examples of images from the dataset, each accompanied by its corresponding annotations.
93
+
94
+ ![African wildlife dataset sample image](https://github.com/ultralytics/docs/releases/download/0/african-wildlife-dataset-sample.avif)
95
+
96
+ - **Mosaiced Image**: Here, we present a training batch consisting of mosaiced dataset images. Mosaicing, a training technique, combines multiple images into one, enriching batch diversity. This method helps enhance the model's ability to generalize across different object sizes, aspect ratios, and contexts.
97
+
98
+ This example illustrates the variety and complexity of images in the African wildlife dataset, emphasizing the benefits of including mosaicing during the training process.
99
+
100
+ ## Citations and Acknowledgments
101
+
102
+ The dataset has been released available under the [AGPL-3.0 License](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
103
+
104
+ ## FAQ
105
+
106
+ ### What is the African Wildlife Dataset, and how can it be used in computer vision projects?
107
+
108
+ The African Wildlife Dataset includes images of four common animal species found in South African nature reserves: buffalo, elephant, rhino, and zebra. It is a valuable resource for training computer vision algorithms in object detection and animal identification. The dataset supports various tasks like object tracking, research, and conservation efforts. For more information on its structure and applications, refer to the [Dataset Structure](#dataset-structure) section and [Applications](#applications) of the dataset.
109
+
110
+ ### How do I train a YOLO11 model using the African Wildlife Dataset?
111
+
112
+ You can train a YOLO11 model on the African Wildlife Dataset by using the `african-wildlife.yaml` configuration file. Below is an example of how to train the YOLO11n model for 100 epochs with an image size of 640:
113
+
114
+ !!! example
115
+
116
+ === "Python"
117
+
118
+ ```python
119
+ from ultralytics import YOLO
120
+
121
+ # Load a model
122
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
123
+
124
+ # Train the model
125
+ results = model.train(data="african-wildlife.yaml", epochs=100, imgsz=640)
126
+ ```
127
+
128
+ === "CLI"
129
+
130
+ ```bash
131
+ # Start training from a pretrained *.pt model
132
+ yolo detect train data=african-wildlife.yaml model=yolo11n.pt epochs=100 imgsz=640
133
+ ```
134
+
135
+ For additional training parameters and options, refer to the [Training](../../modes/train.md) documentation.
136
+
137
+ ### Where can I find the YAML configuration file for the African Wildlife Dataset?
138
+
139
+ The YAML configuration file for the African Wildlife Dataset, named `african-wildlife.yaml`, can be found at [this GitHub link](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml). This file defines the dataset configuration, including paths, classes, and other details crucial for training [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) models. See the [Dataset YAML](#dataset-yaml) section for more details.
140
+
141
+ ### Can I see sample images and annotations from the African Wildlife Dataset?
142
+
143
+ Yes, the African Wildlife Dataset includes a wide variety of images showcasing diverse animal species in their natural habitats. You can view sample images and their corresponding annotations in the [Sample Images and Annotations](#sample-images-and-annotations) section. This section also illustrates the use of mosaicing technique to combine multiple images into one for enriched batch diversity, enhancing the model's generalization ability.
144
+
145
+ ### How can the African Wildlife Dataset be used to support wildlife conservation and research?
146
+
147
+ The African Wildlife Dataset is ideal for supporting wildlife conservation and research by enabling the training and evaluation of models to identify African wildlife in different habitats. These models can assist in monitoring animal populations, studying their behavior, and recognizing conservation needs. Additionally, the dataset can be utilized for educational purposes, helping students and researchers understand the characteristics and behaviors of different animal species. More details can be found in the [Applications](#applications) section.
docs/en/datasets/detect/argoverse.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the comprehensive Argoverse dataset by Argo AI for 3D tracking, motion forecasting, and stereo depth estimation in autonomous driving research.
4
+ keywords: Argoverse dataset, autonomous driving, 3D tracking, motion forecasting, stereo depth estimation, Argo AI, LiDAR point clouds, high-resolution images, HD maps
5
+ ---
6
+
7
+ # Argoverse Dataset
8
+
9
+ The [Argoverse](https://www.argoverse.org/) dataset is a collection of data designed to support research in autonomous driving tasks, such as 3D tracking, motion forecasting, and stereo depth estimation. Developed by Argo AI, the dataset provides a wide range of high-quality sensor data, including high-resolution images, LiDAR point clouds, and map data.
10
+
11
+ !!! note
12
+
13
+ The Argoverse dataset `*.zip` file required for training was removed from Amazon S3 after the shutdown of Argo AI by Ford, but we have made it available for manual download on [Google Drive](https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link).
14
+
15
+ ## Key Features
16
+
17
+ - Argoverse contains over 290K labeled 3D object tracks and 5 million object instances across 1,263 distinct scenes.
18
+ - The dataset includes high-resolution camera images, LiDAR point clouds, and richly annotated HD maps.
19
+ - Annotations include 3D bounding boxes for objects, object tracks, and trajectory information.
20
+ - Argoverse provides multiple subsets for different tasks, such as 3D tracking, motion forecasting, and stereo depth estimation.
21
+
22
+ ## Dataset Structure
23
+
24
+ The Argoverse dataset is organized into three main subsets:
25
+
26
+ 1. **Argoverse 3D Tracking**: This subset contains 113 scenes with over 290K labeled 3D object tracks, focusing on 3D object tracking tasks. It includes LiDAR point clouds, camera images, and sensor calibration information.
27
+ 2. **Argoverse Motion Forecasting**: This subset consists of 324K vehicle trajectories collected from 60 hours of driving data, suitable for motion forecasting tasks.
28
+ 3. **Argoverse Stereo Depth Estimation**: This subset is designed for stereo depth estimation tasks and includes over 10K stereo image pairs with corresponding LiDAR point clouds for ground truth depth estimation.
29
+
30
+ ## Applications
31
+
32
+ The Argoverse dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in autonomous driving tasks such as 3D object tracking, motion forecasting, and stereo depth estimation. The dataset's diverse set of sensor data, object annotations, and map information make it a valuable resource for researchers and practitioners in the field of autonomous driving.
33
+
34
+ ## Dataset YAML
35
+
36
+ A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. For the case of the Argoverse dataset, the `Argoverse.yaml` file is maintained at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Argoverse.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Argoverse.yaml).
37
+
38
+ !!! example "ultralytics/cfg/datasets/Argoverse.yaml"
39
+
40
+ ```yaml
41
+ --8<-- "ultralytics/cfg/datasets/Argoverse.yaml"
42
+ ```
43
+
44
+ ## Usage
45
+
46
+ To train a YOLO11n model on the Argoverse dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
47
+
48
+ !!! example "Train Example"
49
+
50
+ === "Python"
51
+
52
+ ```python
53
+ from ultralytics import YOLO
54
+
55
+ # Load a model
56
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
57
+
58
+ # Train the model
59
+ results = model.train(data="Argoverse.yaml", epochs=100, imgsz=640)
60
+ ```
61
+
62
+ === "CLI"
63
+
64
+ ```bash
65
+ # Start training from a pretrained *.pt model
66
+ yolo detect train data=Argoverse.yaml model=yolo11n.pt epochs=100 imgsz=640
67
+ ```
68
+
69
+ ## Sample Data and Annotations
70
+
71
+ The Argoverse dataset contains a diverse set of sensor data, including camera images, LiDAR point clouds, and HD map information, providing rich context for autonomous driving tasks. Here are some examples of data from the dataset, along with their corresponding annotations:
72
+
73
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/argoverse-3d-tracking-sample.avif)
74
+
75
+ - **Argoverse 3D Tracking**: This image demonstrates an example of 3D object tracking, where objects are annotated with 3D bounding boxes. The dataset provides LiDAR point clouds and camera images to facilitate the development of models for this task.
76
+
77
+ The example showcases the variety and complexity of the data in the Argoverse dataset and highlights the importance of high-quality sensor data for autonomous driving tasks.
78
+
79
+ ## Citations and Acknowledgments
80
+
81
+ If you use the Argoverse dataset in your research or development work, please cite the following paper:
82
+
83
+ !!! quote ""
84
+
85
+ === "BibTeX"
86
+
87
+ ```bibtex
88
+ @inproceedings{chang2019argoverse,
89
+ title={Argoverse: 3D Tracking and Forecasting with Rich Maps},
90
+ author={Chang, Ming-Fang and Lambert, John and Sangkloy, Patsorn and Singh, Jagjeet and Bak, Slawomir and Hartnett, Andrew and Wang, Dequan and Carr, Peter and Lucey, Simon and Ramanan, Deva and others},
91
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
92
+ pages={8748--8757},
93
+ year={2019}
94
+ }
95
+ ```
96
+
97
+ We would like to acknowledge Argo AI for creating and maintaining the Argoverse dataset as a valuable resource for the autonomous driving research community. For more information about the Argoverse dataset and its creators, visit the [Argoverse dataset website](https://www.argoverse.org/).
98
+
99
+ ## FAQ
100
+
101
+ ### What is the Argoverse dataset and its key features?
102
+
103
+ The [Argoverse](https://www.argoverse.org/) dataset, developed by Argo AI, supports autonomous driving research. It includes over 290K labeled 3D object tracks and 5 million object instances across 1,263 distinct scenes. The dataset provides high-resolution camera images, LiDAR point clouds, and annotated HD maps, making it valuable for tasks like 3D tracking, motion forecasting, and stereo depth estimation.
104
+
105
+ ### How can I train an Ultralytics YOLO model using the Argoverse dataset?
106
+
107
+ To train a YOLO11 model with the Argoverse dataset, use the provided YAML configuration file and the following code:
108
+
109
+ !!! example "Train Example"
110
+
111
+ === "Python"
112
+
113
+ ```python
114
+ from ultralytics import YOLO
115
+
116
+ # Load a model
117
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
118
+
119
+ # Train the model
120
+ results = model.train(data="Argoverse.yaml", epochs=100, imgsz=640)
121
+ ```
122
+
123
+
124
+ === "CLI"
125
+
126
+ ```bash
127
+ # Start training from a pretrained *.pt model
128
+ yolo detect train data=Argoverse.yaml model=yolo11n.pt epochs=100 imgsz=640
129
+ ```
130
+
131
+ For a detailed explanation of the arguments, refer to the model [Training](../../modes/train.md) page.
132
+
133
+ ### What types of data and annotations are available in the Argoverse dataset?
134
+
135
+ The Argoverse dataset includes various sensor data types such as high-resolution camera images, LiDAR point clouds, and HD map data. Annotations include 3D bounding boxes, object tracks, and trajectory information. These comprehensive annotations are essential for accurate model training in tasks like 3D object tracking, motion forecasting, and stereo depth estimation.
136
+
137
+ ### How is the Argoverse dataset structured?
138
+
139
+ The dataset is divided into three main subsets:
140
+
141
+ 1. **Argoverse 3D Tracking**: Contains 113 scenes with over 290K labeled 3D object tracks, focusing on 3D object tracking tasks. It includes LiDAR point clouds, camera images, and sensor calibration information.
142
+ 2. **Argoverse Motion Forecasting**: Consists of 324K vehicle trajectories collected from 60 hours of driving data, suitable for motion forecasting tasks.
143
+ 3. **Argoverse Stereo Depth Estimation**: Includes over 10K stereo image pairs with corresponding LiDAR point clouds for ground truth depth estimation.
144
+
145
+ ### Where can I download the Argoverse dataset now that it has been removed from Amazon S3?
146
+
147
+ The Argoverse dataset `*.zip` file, previously available on Amazon S3, can now be manually downloaded from [Google Drive](https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link).
148
+
149
+ ### What is the YAML configuration file used for with the Argoverse dataset?
150
+
151
+ A YAML file contains the dataset's paths, classes, and other essential information. For the Argoverse dataset, the configuration file, `Argoverse.yaml`, can be found at the following link: [Argoverse.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Argoverse.yaml).
152
+
153
+ For more information about YAML configurations, see our [datasets](../index.md) guide.
docs/en/datasets/detect/brain-tumor.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the brain tumor detection dataset with MRI/CT images. Essential for training AI models for early diagnosis and treatment planning.
4
+ keywords: brain tumor dataset, MRI scans, CT scans, brain tumor detection, medical imaging, AI in healthcare, computer vision, early diagnosis, treatment planning
5
+ ---
6
+
7
+ # Brain Tumor Dataset
8
+
9
+ A brain tumor detection dataset consists of medical images from MRI or CT scans, containing information about brain tumor presence, location, and characteristics. This dataset is essential for training [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) algorithms to automate brain tumor identification, aiding in early diagnosis and treatment planning.
10
+
11
+ <p align="center">
12
+ <br>
13
+ <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/ogTBBD8McRk"
14
+ title="YouTube video player" frameborder="0"
15
+ allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
16
+ allowfullscreen>
17
+ </iframe>
18
+ <br>
19
+ <strong>Watch:</strong> Brain Tumor Detection using Ultralytics HUB
20
+ </p>
21
+
22
+ ## Dataset Structure
23
+
24
+ The brain tumor dataset is divided into two subsets:
25
+
26
+ - **Training set**: Consisting of 893 images, each accompanied by corresponding annotations.
27
+ - **Testing set**: Comprising 223 images, with annotations paired for each one.
28
+
29
+ ## Applications
30
+
31
+ The application of brain tumor detection using computer vision enables early diagnosis, treatment planning, and monitoring of tumor progression. By analyzing medical imaging data like MRI or CT scans, computer vision systems assist in accurately identifying brain tumors, aiding in timely medical intervention and personalized treatment strategies.
32
+
33
+ ## Dataset YAML
34
+
35
+ A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the brain tumor dataset, the `brain-tumor.yaml` file is maintained at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/brain-tumor.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/brain-tumor.yaml).
36
+
37
+ !!! example "ultralytics/cfg/datasets/brain-tumor.yaml"
38
+
39
+ ```yaml
40
+ --8<-- "ultralytics/cfg/datasets/brain-tumor.yaml"
41
+ ```
42
+
43
+ ## Usage
44
+
45
+ To train a YOLO11n model on the brain tumor dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, utilize the provided code snippets. For a detailed list of available arguments, consult the model's [Training](../../modes/train.md) page.
46
+
47
+ !!! example "Train Example"
48
+
49
+ === "Python"
50
+
51
+ ```python
52
+ from ultralytics import YOLO
53
+
54
+ # Load a model
55
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
56
+
57
+ # Train the model
58
+ results = model.train(data="brain-tumor.yaml", epochs=100, imgsz=640)
59
+ ```
60
+
61
+ === "CLI"
62
+
63
+ ```bash
64
+ # Start training from a pretrained *.pt model
65
+ yolo detect train data=brain-tumor.yaml model=yolo11n.pt epochs=100 imgsz=640
66
+ ```
67
+
68
+ !!! example "Inference Example"
69
+
70
+ === "Python"
71
+
72
+ ```python
73
+ from ultralytics import YOLO
74
+
75
+ # Load a model
76
+ model = YOLO("path/to/best.pt") # load a brain-tumor fine-tuned model
77
+
78
+ # Inference using the model
79
+ results = model.predict("https://ultralytics.com/assets/brain-tumor-sample.jpg")
80
+ ```
81
+
82
+ === "CLI"
83
+
84
+ ```bash
85
+ # Start prediction with a finetuned *.pt model
86
+ yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/brain-tumor-sample.jpg"
87
+ ```
88
+
89
+ ## Sample Images and Annotations
90
+
91
+ The brain tumor dataset encompasses a wide array of images featuring diverse object categories and intricate scenes. Presented below are examples of images from the dataset, accompanied by their respective annotations
92
+
93
+ ![Brain tumor dataset sample image](https://github.com/ultralytics/docs/releases/download/0/brain-tumor-dataset-sample-image.avif)
94
+
95
+ - **Mosaiced Image**: Displayed here is a training batch comprising mosaiced dataset images. Mosaicing, a training technique, consolidates multiple images into one, enhancing batch diversity. This approach aids in improving the model's capacity to generalize across various object sizes, aspect ratios, and contexts.
96
+
97
+ This example highlights the diversity and intricacy of images within the brain tumor dataset, underscoring the advantages of incorporating mosaicing during the training phase.
98
+
99
+ ## Citations and Acknowledgments
100
+
101
+ The dataset has been released available under the [AGPL-3.0 License](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
102
+
103
+ ## FAQ
104
+
105
+ ### What is the structure of the brain tumor dataset available in Ultralytics documentation?
106
+
107
+ The brain tumor dataset is divided into two subsets: the **training set** consists of 893 images with corresponding annotations, while the **testing set** comprises 223 images with paired annotations. This structured division aids in developing robust and accurate computer vision models for detecting brain tumors. For more information on the dataset structure, visit the [Dataset Structure](#dataset-structure) section.
108
+
109
+ ### How can I train a YOLO11 model on the brain tumor dataset using Ultralytics?
110
+
111
+ You can train a YOLO11 model on the brain tumor dataset for 100 epochs with an image size of 640px using both Python and CLI methods. Below are the examples for both:
112
+
113
+ !!! example "Train Example"
114
+
115
+ === "Python"
116
+
117
+ ```python
118
+ from ultralytics import YOLO
119
+
120
+ # Load a model
121
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
122
+
123
+ # Train the model
124
+ results = model.train(data="brain-tumor.yaml", epochs=100, imgsz=640)
125
+ ```
126
+
127
+
128
+ === "CLI"
129
+
130
+ ```bash
131
+ # Start training from a pretrained *.pt model
132
+ yolo detect train data=brain-tumor.yaml model=yolo11n.pt epochs=100 imgsz=640
133
+ ```
134
+
135
+ For a detailed list of available arguments, refer to the [Training](../../modes/train.md) page.
136
+
137
+ ### What are the benefits of using the brain tumor dataset for AI in healthcare?
138
+
139
+ Using the brain tumor dataset in AI projects enables early diagnosis and treatment planning for brain tumors. It helps in automating brain tumor identification through computer vision, facilitating accurate and timely medical interventions, and supporting personalized treatment strategies. This application holds significant potential in improving patient outcomes and medical efficiencies.
140
+
141
+ ### How do I perform inference using a fine-tuned YOLO11 model on the brain tumor dataset?
142
+
143
+ Inference using a fine-tuned YOLO11 model can be performed with either Python or CLI approaches. Here are the examples:
144
+
145
+ !!! example "Inference Example"
146
+
147
+ === "Python"
148
+
149
+ ```python
150
+ from ultralytics import YOLO
151
+
152
+ # Load a model
153
+ model = YOLO("path/to/best.pt") # load a brain-tumor fine-tuned model
154
+
155
+ # Inference using the model
156
+ results = model.predict("https://ultralytics.com/assets/brain-tumor-sample.jpg")
157
+ ```
158
+
159
+ === "CLI"
160
+
161
+ ```bash
162
+ # Start prediction with a finetuned *.pt model
163
+ yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/brain-tumor-sample.jpg"
164
+ ```
165
+
166
+ ### Where can I find the YAML configuration for the brain tumor dataset?
167
+
168
+ The YAML configuration file for the brain tumor dataset can be found at [brain-tumor.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/brain-tumor.yaml). This file includes paths, classes, and additional relevant information necessary for training and evaluating models on this dataset.
docs/en/datasets/detect/coco.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ comments: true
3
+ description: Explore the COCO dataset for object detection and segmentation. Learn about its structure, usage, pretrained models, and key features.
4
+ keywords: COCO dataset, object detection, segmentation, benchmarking, computer vision, pose estimation, YOLO models, COCO annotations
5
+ ---
6
+
7
+ # COCO Dataset
8
+
9
+ The [COCO](https://cocodataset.org/#home) (Common Objects in Context) dataset is a large-scale object detection, segmentation, and captioning dataset. It is designed to encourage research on a wide variety of object categories and is commonly used for benchmarking [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) models. It is an essential dataset for researchers and developers working on object detection, segmentation, and pose estimation tasks.
10
+
11
+ <p align="center">
12
+ <br>
13
+ <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/uDrn9QZJ2lk"
14
+ title="YouTube video player" frameborder="0"
15
+ allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
16
+ allowfullscreen>
17
+ </iframe>
18
+ <br>
19
+ <strong>Watch:</strong> Ultralytics COCO Dataset Overview
20
+ </p>
21
+
22
+ ## COCO Pretrained Models
23
+
24
+ {% include "macros/yolo-det-perf.md" %}
25
+
26
+ ## Key Features
27
+
28
+ - COCO contains 330K images, with 200K images having annotations for object detection, segmentation, and captioning tasks.
29
+ - The dataset comprises 80 object categories, including common objects like cars, bicycles, and animals, as well as more specific categories such as umbrellas, handbags, and sports equipment.
30
+ - Annotations include object bounding boxes, segmentation masks, and captions for each image.
31
+ - COCO provides standardized evaluation metrics like [mean Average Precision](https://www.ultralytics.com/glossary/mean-average-precision-map) (mAP) for object detection, and mean Average [Recall](https://www.ultralytics.com/glossary/recall) (mAR) for segmentation tasks, making it suitable for comparing model performance.
32
+
33
+ ## Dataset Structure
34
+
35
+ The COCO dataset is split into three subsets:
36
+
37
+ 1. **Train2017**: This subset contains 118K images for training object detection, segmentation, and captioning models.
38
+ 2. **Val2017**: This subset has 5K images used for validation purposes during model training.
39
+ 3. **Test2017**: This subset consists of 20K images used for testing and benchmarking the trained models. Ground truth annotations for this subset are not publicly available, and the results are submitted to the [COCO evaluation server](https://codalab.lisn.upsaclay.fr/competitions/7384) for performance evaluation.
40
+
41
+ ## Applications
42
+
43
+ The COCO dataset is widely used for training and evaluating [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) models in object detection (such as YOLO, Faster R-CNN, and SSD), [instance segmentation](https://www.ultralytics.com/glossary/instance-segmentation) (such as Mask R-CNN), and keypoint detection (such as OpenPose). The dataset's diverse set of object categories, large number of annotated images, and standardized evaluation metrics make it an essential resource for computer vision researchers and practitioners.
44
+
45
+ ## Dataset YAML
46
+
47
+ A YAML (Yet Another Markup Language) file is used to define the dataset configuration. It contains information about the dataset's paths, classes, and other relevant information. In the case of the COCO dataset, the `coco.yaml` file is maintained at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml).
48
+
49
+ !!! example "ultralytics/cfg/datasets/coco.yaml"
50
+
51
+ ```yaml
52
+ --8<-- "ultralytics/cfg/datasets/coco.yaml"
53
+ ```
54
+
55
+ ## Usage
56
+
57
+ To train a YOLO11n model on the COCO dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
58
+
59
+ !!! example "Train Example"
60
+
61
+ === "Python"
62
+
63
+ ```python
64
+ from ultralytics import YOLO
65
+
66
+ # Load a model
67
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
68
+
69
+ # Train the model
70
+ results = model.train(data="coco.yaml", epochs=100, imgsz=640)
71
+ ```
72
+
73
+ === "CLI"
74
+
75
+ ```bash
76
+ # Start training from a pretrained *.pt model
77
+ yolo detect train data=coco.yaml model=yolo11n.pt epochs=100 imgsz=640
78
+ ```
79
+
80
+ ## Sample Images and Annotations
81
+
82
+ The COCO dataset contains a diverse set of images with various object categories and complex scenes. Here are some examples of images from the dataset, along with their corresponding annotations:
83
+
84
+ ![Dataset sample image](https://github.com/ultralytics/docs/releases/download/0/mosaiced-coco-dataset-sample.avif)
85
+
86
+ - **Mosaiced Image**: This image demonstrates a training batch composed of mosaiced dataset images. Mosaicing is a technique used during training that combines multiple images into a single image to increase the variety of objects and scenes within each training batch. This helps improve the model's ability to generalize to different object sizes, aspect ratios, and contexts.
87
+
88
+ The example showcases the variety and complexity of the images in the COCO dataset and the benefits of using mosaicing during the training process.
89
+
90
+ ## Citations and Acknowledgments
91
+
92
+ If you use the COCO dataset in your research or development work, please cite the following paper:
93
+
94
+ !!! quote ""
95
+
96
+ === "BibTeX"
97
+
98
+ ```bibtex
99
+ @misc{lin2015microsoft,
100
+ title={Microsoft COCO: Common Objects in Context},
101
+ author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
102
+ year={2015},
103
+ eprint={1405.0312},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.CV}
106
+ }
107
+ ```
108
+
109
+ We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the [COCO dataset website](https://cocodataset.org/#home).
110
+
111
+ ## FAQ
112
+
113
+ ### What is the COCO dataset and why is it important for computer vision?
114
+
115
+ The [COCO dataset](https://cocodataset.org/#home) (Common Objects in Context) is a large-scale dataset used for [object detection](https://www.ultralytics.com/glossary/object-detection), segmentation, and captioning. It contains 330K images with detailed annotations for 80 object categories, making it essential for benchmarking and training computer vision models. Researchers use COCO due to its diverse categories and standardized evaluation metrics like mean Average [Precision](https://www.ultralytics.com/glossary/precision) (mAP).
116
+
117
+ ### How can I train a YOLO model using the COCO dataset?
118
+
119
+ To train a YOLO11 model using the COCO dataset, you can use the following code snippets:
120
+
121
+ !!! example "Train Example"
122
+
123
+ === "Python"
124
+
125
+ ```python
126
+ from ultralytics import YOLO
127
+
128
+ # Load a model
129
+ model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
130
+
131
+ # Train the model
132
+ results = model.train(data="coco.yaml", epochs=100, imgsz=640)
133
+ ```
134
+
135
+ === "CLI"
136
+
137
+ ```bash
138
+ # Start training from a pretrained *.pt model
139
+ yolo detect train data=coco.yaml model=yolo11n.pt epochs=100 imgsz=640
140
+ ```
141
+
142
+ Refer to the [Training page](../../modes/train.md) for more details on available arguments.
143
+
144
+ ### What are the key features of the COCO dataset?
145
+
146
+ The COCO dataset includes:
147
+
148
+ - 330K images, with 200K annotated for object detection, segmentation, and captioning.
149
+ - 80 object categories ranging from common items like cars and animals to specific ones like handbags and sports equipment.
150
+ - Standardized evaluation metrics for object detection (mAP) and segmentation (mean Average Recall, mAR).
151
+ - **Mosaicing** technique in training batches to enhance model generalization across various object sizes and contexts.
152
+
153
+ ### Where can I find pretrained YOLO11 models trained on the COCO dataset?
154
+
155
+ Pretrained YOLO11 models on the COCO dataset can be downloaded from the links provided in the documentation. Examples include:
156
+
157
+ - [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt)
158
+ - [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt)
159
+ - [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt)
160
+ - [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt)
161
+ - [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt)
162
+
163
+ These models vary in size, mAP, and inference speed, providing options for different performance and resource requirements.
164
+
165
+ ### How is the COCO dataset structured and how do I use it?
166
+
167
+ The COCO dataset is split into three subsets:
168
+
169
+ 1. **Train2017**: 118K images for training.
170
+ 2. **Val2017**: 5K images for validation during training.
171
+ 3. **Test2017**: 20K images for benchmarking trained models. Results need to be submitted to the [COCO evaluation server](https://codalab.lisn.upsaclay.fr/competitions/7384) for performance evaluation.
172
+
173
+ The dataset's YAML configuration file is available at [coco.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml), which defines paths, classes, and dataset details.