File size: 62,499 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
# Ultralytics YOLO 🚀, AGPL-3.0 license

import math
import warnings
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version

from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, TryExcept, ops, plt_settings, threaded
from ultralytics.utils.checks import check_font, check_version, is_ascii
from ultralytics.utils.files import increment_path


class Colors:
    """

    Ultralytics color palette https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Colors.



    This class provides methods to work with the Ultralytics color palette, including converting hex color codes to

    RGB values.



    Attributes:

        palette (list of tuple): List of RGB color values.

        n (int): The number of colors in the palette.

        pose_palette (np.ndarray): A specific color palette array with dtype np.uint8.



    ## Ultralytics Color Palette



    | Index | Color                                                             | HEX       | RGB               |

    |-------|-------------------------------------------------------------------|-----------|-------------------|

    | 0     | <i class="fa-solid fa-square fa-2xl" style="color: #042aff;"></i> | `#042aff` | (4, 42, 255)      |

    | 1     | <i class="fa-solid fa-square fa-2xl" style="color: #0bdbeb;"></i> | `#0bdbeb` | (11, 219, 235)    |

    | 2     | <i class="fa-solid fa-square fa-2xl" style="color: #f3f3f3;"></i> | `#f3f3f3` | (243, 243, 243)   |

    | 3     | <i class="fa-solid fa-square fa-2xl" style="color: #00dfb7;"></i> | `#00dfb7` | (0, 223, 183)     |

    | 4     | <i class="fa-solid fa-square fa-2xl" style="color: #111f68;"></i> | `#111f68` | (17, 31, 104)     |

    | 5     | <i class="fa-solid fa-square fa-2xl" style="color: #ff6fdd;"></i> | `#ff6fdd` | (255, 111, 221)   |

    | 6     | <i class="fa-solid fa-square fa-2xl" style="color: #ff444f;"></i> | `#ff444f` | (255, 68, 79)     |

    | 7     | <i class="fa-solid fa-square fa-2xl" style="color: #cced00;"></i> | `#cced00` | (204, 237, 0)     |

    | 8     | <i class="fa-solid fa-square fa-2xl" style="color: #00f344;"></i> | `#00f344` | (0, 243, 68)      |

    | 9     | <i class="fa-solid fa-square fa-2xl" style="color: #bd00ff;"></i> | `#bd00ff` | (189, 0, 255)     |

    | 10    | <i class="fa-solid fa-square fa-2xl" style="color: #00b4ff;"></i> | `#00b4ff` | (0, 180, 255)     |

    | 11    | <i class="fa-solid fa-square fa-2xl" style="color: #dd00ba;"></i> | `#dd00ba` | (221, 0, 186)     |

    | 12    | <i class="fa-solid fa-square fa-2xl" style="color: #00ffff;"></i> | `#00ffff` | (0, 255, 255)     |

    | 13    | <i class="fa-solid fa-square fa-2xl" style="color: #26c000;"></i> | `#26c000` | (38, 192, 0)      |

    | 14    | <i class="fa-solid fa-square fa-2xl" style="color: #01ffb3;"></i> | `#01ffb3` | (1, 255, 179)     |

    | 15    | <i class="fa-solid fa-square fa-2xl" style="color: #7d24ff;"></i> | `#7d24ff` | (125, 36, 255)    |

    | 16    | <i class="fa-solid fa-square fa-2xl" style="color: #7b0068;"></i> | `#7b0068` | (123, 0, 104)     |

    | 17    | <i class="fa-solid fa-square fa-2xl" style="color: #ff1b6c;"></i> | `#ff1b6c` | (255, 27, 108)    |

    | 18    | <i class="fa-solid fa-square fa-2xl" style="color: #fc6d2f;"></i> | `#fc6d2f` | (252, 109, 47)    |

    | 19    | <i class="fa-solid fa-square fa-2xl" style="color: #a2ff0b;"></i> | `#a2ff0b` | (162, 255, 11)    |



    ## Pose Color Palette



    | Index | Color                                                             | HEX       | RGB               |

    |-------|-------------------------------------------------------------------|-----------|-------------------|

    | 0     | <i class="fa-solid fa-square fa-2xl" style="color: #ff8000;"></i> | `#ff8000` | (255, 128, 0)     |

    | 1     | <i class="fa-solid fa-square fa-2xl" style="color: #ff9933;"></i> | `#ff9933` | (255, 153, 51)    |

    | 2     | <i class="fa-solid fa-square fa-2xl" style="color: #ffb266;"></i> | `#ffb266` | (255, 178, 102)   |

    | 3     | <i class="fa-solid fa-square fa-2xl" style="color: #e6e600;"></i> | `#e6e600` | (230, 230, 0)     |

    | 4     | <i class="fa-solid fa-square fa-2xl" style="color: #ff99ff;"></i> | `#ff99ff` | (255, 153, 255)   |

    | 5     | <i class="fa-solid fa-square fa-2xl" style="color: #99ccff;"></i> | `#99ccff` | (153, 204, 255)   |

    | 6     | <i class="fa-solid fa-square fa-2xl" style="color: #ff66ff;"></i> | `#ff66ff` | (255, 102, 255)   |

    | 7     | <i class="fa-solid fa-square fa-2xl" style="color: #ff33ff;"></i> | `#ff33ff` | (255, 51, 255)    |

    | 8     | <i class="fa-solid fa-square fa-2xl" style="color: #66b2ff;"></i> | `#66b2ff` | (102, 178, 255)   |

    | 9     | <i class="fa-solid fa-square fa-2xl" style="color: #3399ff;"></i> | `#3399ff` | (51, 153, 255)    |

    | 10    | <i class="fa-solid fa-square fa-2xl" style="color: #ff9999;"></i> | `#ff9999` | (255, 153, 153)   |

    | 11    | <i class="fa-solid fa-square fa-2xl" style="color: #ff6666;"></i> | `#ff6666` | (255, 102, 102)   |

    | 12    | <i class="fa-solid fa-square fa-2xl" style="color: #ff3333;"></i> | `#ff3333` | (255, 51, 51)     |

    | 13    | <i class="fa-solid fa-square fa-2xl" style="color: #99ff99;"></i> | `#99ff99` | (153, 255, 153)   |

    | 14    | <i class="fa-solid fa-square fa-2xl" style="color: #66ff66;"></i> | `#66ff66` | (102, 255, 102)   |

    | 15    | <i class="fa-solid fa-square fa-2xl" style="color: #33ff33;"></i> | `#33ff33` | (51, 255, 51)     |

    | 16    | <i class="fa-solid fa-square fa-2xl" style="color: #00ff00;"></i> | `#00ff00` | (0, 255, 0)       |

    | 17    | <i class="fa-solid fa-square fa-2xl" style="color: #0000ff;"></i> | `#0000ff` | (0, 0, 255)       |

    | 18    | <i class="fa-solid fa-square fa-2xl" style="color: #ff0000;"></i> | `#ff0000` | (255, 0, 0)       |

    | 19    | <i class="fa-solid fa-square fa-2xl" style="color: #ffffff;"></i> | `#ffffff` | (255, 255, 255)   |



    !!! note "Ultralytics Brand Colors"



        For Ultralytics brand colors see [https://www.ultralytics.com/brand](https://www.ultralytics.com/brand). Please use the official Ultralytics colors for all marketing materials.

    """

    def __init__(self):
        """Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values()."""
        hexs = (
            "042AFF",
            "0BDBEB",
            "F3F3F3",
            "00DFB7",
            "111F68",
            "FF6FDD",
            "FF444F",
            "CCED00",
            "00F344",
            "BD00FF",
            "00B4FF",
            "DD00BA",
            "00FFFF",
            "26C000",
            "01FFB3",
            "7D24FF",
            "7B0068",
            "FF1B6C",
            "FC6D2F",
            "A2FF0B",
        )
        self.palette = [self.hex2rgb(f"#{c}") for c in hexs]
        self.n = len(self.palette)
        self.pose_palette = np.array(
            [
                [255, 128, 0],
                [255, 153, 51],
                [255, 178, 102],
                [230, 230, 0],
                [255, 153, 255],
                [153, 204, 255],
                [255, 102, 255],
                [255, 51, 255],
                [102, 178, 255],
                [51, 153, 255],
                [255, 153, 153],
                [255, 102, 102],
                [255, 51, 51],
                [153, 255, 153],
                [102, 255, 102],
                [51, 255, 51],
                [0, 255, 0],
                [0, 0, 255],
                [255, 0, 0],
                [255, 255, 255],
            ],
            dtype=np.uint8,
        )

    def __call__(self, i, bgr=False):
        """Converts hex color codes to RGB values."""
        c = self.palette[int(i) % self.n]
        return (c[2], c[1], c[0]) if bgr else c

    @staticmethod
    def hex2rgb(h):
        """Converts hex color codes to RGB values (i.e. default PIL order)."""
        return tuple(int(h[1 + i : 1 + i + 2], 16) for i in (0, 2, 4))


colors = Colors()  # create instance for 'from utils.plots import colors'


class Annotator:
    """

    Ultralytics Annotator for train/val mosaics and JPGs and predictions annotations.



    Attributes:

        im (Image.Image or numpy array): The image to annotate.

        pil (bool): Whether to use PIL or cv2 for drawing annotations.

        font (ImageFont.truetype or ImageFont.load_default): Font used for text annotations.

        lw (float): Line width for drawing.

        skeleton (List[List[int]]): Skeleton structure for keypoints.

        limb_color (List[int]): Color palette for limbs.

        kpt_color (List[int]): Color palette for keypoints.

    """

    def __init__(self, im, line_width=None, font_size=None, font="Arial.ttf", pil=False, example="abc"):
        """Initialize the Annotator class with image and line width along with color palette for keypoints and limbs."""
        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
        input_is_pil = isinstance(im, Image.Image)
        self.pil = pil or non_ascii or input_is_pil
        self.lw = line_width or max(round(sum(im.size if input_is_pil else im.shape) / 2 * 0.003), 2)
        if self.pil:  # use PIL
            self.im = im if input_is_pil else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            try:
                font = check_font("Arial.Unicode.ttf" if non_ascii else font)
                size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)
                self.font = ImageFont.truetype(str(font), size)
            except Exception:
                self.font = ImageFont.load_default()
            # Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string)
            if check_version(pil_version, "9.2.0"):
                self.font.getsize = lambda x: self.font.getbbox(x)[2:4]  # text width, height
        else:  # use cv2
            assert im.data.contiguous, "Image not contiguous. Apply np.ascontiguousarray(im) to Annotator input images."
            self.im = im if im.flags.writeable else im.copy()
            self.tf = max(self.lw - 1, 1)  # font thickness
            self.sf = self.lw / 3  # font scale
        # Pose
        self.skeleton = [
            [16, 14],
            [14, 12],
            [17, 15],
            [15, 13],
            [12, 13],
            [6, 12],
            [7, 13],
            [6, 7],
            [6, 8],
            [7, 9],
            [8, 10],
            [9, 11],
            [2, 3],
            [1, 2],
            [1, 3],
            [2, 4],
            [3, 5],
            [4, 6],
            [5, 7],
        ]

        self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
        self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
        self.dark_colors = {
            (235, 219, 11),
            (243, 243, 243),
            (183, 223, 0),
            (221, 111, 255),
            (0, 237, 204),
            (68, 243, 0),
            (255, 255, 0),
            (179, 255, 1),
            (11, 255, 162),
        }
        self.light_colors = {
            (255, 42, 4),
            (79, 68, 255),
            (255, 0, 189),
            (255, 180, 0),
            (186, 0, 221),
            (0, 192, 38),
            (255, 36, 125),
            (104, 0, 123),
            (108, 27, 255),
            (47, 109, 252),
            (104, 31, 17),
        }

    def get_txt_color(self, color=(128, 128, 128), txt_color=(255, 255, 255)):
        """Assign text color based on background color."""
        if color in self.dark_colors:
            return 104, 31, 17
        elif color in self.light_colors:
            return 255, 255, 255
        else:
            return txt_color

    def circle_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=2):
        """

        Draws a label with a background circle centered within a given bounding box.



        Args:

            box (tuple): The bounding box coordinates (x1, y1, x2, y2).

            label (str): The text label to be displayed.

            color (tuple, optional): The background color of the rectangle (B, G, R).

            txt_color (tuple, optional): The color of the text (R, G, B).

            margin (int, optional): The margin between the text and the rectangle border.

        """
        # If label have more than 3 characters, skip other characters, due to circle size
        if len(label) > 3:
            print(
                f"Length of label is {len(label)}, initial 3 label characters will be considered for circle annotation!"
            )
            label = label[:3]

        # Calculate the center of the box
        x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        # Get the text size
        text_size = cv2.getTextSize(str(label), cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.15, self.tf)[0]
        # Calculate the required radius to fit the text with the margin
        required_radius = int(((text_size[0] ** 2 + text_size[1] ** 2) ** 0.5) / 2) + margin
        # Draw the circle with the required radius
        cv2.circle(self.im, (x_center, y_center), required_radius, color, -1)
        # Calculate the position for the text
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2
        # Draw the text
        cv2.putText(
            self.im,
            str(label),
            (text_x, text_y),
            cv2.FONT_HERSHEY_SIMPLEX,
            self.sf - 0.15,
            self.get_txt_color(color, txt_color),
            self.tf,
            lineType=cv2.LINE_AA,
        )

    def text_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), margin=5):
        """

        Draws a label with a background rectangle centered within a given bounding box.



        Args:

            box (tuple): The bounding box coordinates (x1, y1, x2, y2).

            label (str): The text label to be displayed.

            color (tuple, optional): The background color of the rectangle (B, G, R).

            txt_color (tuple, optional): The color of the text (R, G, B).

            margin (int, optional): The margin between the text and the rectangle border.

        """
        # Calculate the center of the bounding box
        x_center, y_center = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        # Get the size of the text
        text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, self.sf - 0.1, self.tf)[0]
        # Calculate the top-left corner of the text (to center it)
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2
        # Calculate the coordinates of the background rectangle
        rect_x1 = text_x - margin
        rect_y1 = text_y - text_size[1] - margin
        rect_x2 = text_x + text_size[0] + margin
        rect_y2 = text_y + margin
        # Draw the background rectangle
        cv2.rectangle(self.im, (rect_x1, rect_y1), (rect_x2, rect_y2), color, -1)
        # Draw the text on top of the rectangle
        cv2.putText(
            self.im,
            label,
            (text_x, text_y),
            cv2.FONT_HERSHEY_SIMPLEX,
            self.sf - 0.1,
            self.get_txt_color(color, txt_color),
            self.tf,
            lineType=cv2.LINE_AA,
        )

    def box_label(self, box, label="", color=(128, 128, 128), txt_color=(255, 255, 255), rotated=False):
        """

        Draws a bounding box to image with label.



        Args:

            box (tuple): The bounding box coordinates (x1, y1, x2, y2).

            label (str): The text label to be displayed.

            color (tuple, optional): The background color of the rectangle (B, G, R).

            txt_color (tuple, optional): The color of the text (R, G, B).

            rotated (bool, optional): Variable used to check if task is OBB

        """
        txt_color = self.get_txt_color(color, txt_color)
        if isinstance(box, torch.Tensor):
            box = box.tolist()
        if self.pil or not is_ascii(label):
            if rotated:
                p1 = box[0]
                self.draw.polygon([tuple(b) for b in box], width=self.lw, outline=color)  # PIL requires tuple box
            else:
                p1 = (box[0], box[1])
                self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                w, h = self.font.getsize(label)  # text width, height
                outside = p1[1] >= h  # label fits outside box
                if p1[0] > self.im.size[0] - w:  # size is (w, h), check if label extend beyond right side of image
                    p1 = self.im.size[0] - w, p1[1]
                self.draw.rectangle(
                    (p1[0], p1[1] - h if outside else p1[1], p1[0] + w + 1, p1[1] + 1 if outside else p1[1] + h + 1),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text((p1[0], p1[1] - h if outside else p1[1]), label, fill=txt_color, font=self.font)
        else:  # cv2
            if rotated:
                p1 = [int(b) for b in box[0]]
                cv2.polylines(self.im, [np.asarray(box, dtype=int)], True, color, self.lw)  # cv2 requires nparray box
            else:
                p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
                cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
            if label:
                w, h = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                h += 3  # add pixels to pad text
                outside = p1[1] >= h  # label fits outside box
                if p1[0] > self.im.shape[1] - w:  # shape is (h, w), check if label extend beyond right side of image
                    p1 = self.im.shape[1] - w, p1[1]
                p2 = p1[0] + w, p1[1] - h if outside else p1[1] + h
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(
                    self.im,
                    label,
                    (p1[0], p1[1] - 2 if outside else p1[1] + h - 1),
                    0,
                    self.sf,
                    txt_color,
                    thickness=self.tf,
                    lineType=cv2.LINE_AA,
                )

    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
        """

        Plot masks on image.



        Args:

            masks (tensor): Predicted masks on cuda, shape: [n, h, w]

            colors (List[List[Int]]): Colors for predicted masks, [[r, g, b] * n]

            im_gpu (tensor): Image is in cuda, shape: [3, h, w], range: [0, 1]

            alpha (float): Mask transparency: 0.0 fully transparent, 1.0 opaque

            retina_masks (bool): Whether to use high resolution masks or not. Defaults to False.

        """
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        if len(masks) == 0:
            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
        if im_gpu.device != masks.device:
            im_gpu = im_gpu.to(masks.device)
        colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0  # shape(n,3)
        colors = colors[:, None, None]  # shape(n,1,1,3)
        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)

        inv_alpha_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = masks_color.max(dim=0).values  # shape(n,h,w,3)

        im_gpu = im_gpu.flip(dims=[0])  # flip channel
        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
        im_gpu = im_gpu * inv_alpha_masks[-1] + mcs
        im_mask = im_gpu * 255
        im_mask_np = im_mask.byte().cpu().numpy()
        self.im[:] = im_mask_np if retina_masks else ops.scale_image(im_mask_np, self.im.shape)
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def kpts(self, kpts, shape=(640, 640), radius=None, kpt_line=True, conf_thres=0.25, kpt_color=None):
        """

        Plot keypoints on the image.



        Args:

            kpts (torch.Tensor): Keypoints, shape [17, 3] (x, y, confidence).

            shape (tuple, optional): Image shape (h, w). Defaults to (640, 640).

            radius (int, optional): Keypoint radius. Defaults to 5.

            kpt_line (bool, optional): Draw lines between keypoints. Defaults to True.

            conf_thres (float, optional): Confidence threshold. Defaults to 0.25.

            kpt_color (tuple, optional): Keypoint color (B, G, R). Defaults to None.



        Note:

            - `kpt_line=True` currently only supports human pose plotting.

            - Modifies self.im in-place.

            - If self.pil is True, converts image to numpy array and back to PIL.

        """
        radius = radius if radius is not None else self.lw
        if self.pil:
            # Convert to numpy first
            self.im = np.asarray(self.im).copy()
        nkpt, ndim = kpts.shape
        is_pose = nkpt == 17 and ndim in {2, 3}
        kpt_line &= is_pose  # `kpt_line=True` for now only supports human pose plotting
        for i, k in enumerate(kpts):
            color_k = kpt_color or (self.kpt_color[i].tolist() if is_pose else colors(i))
            x_coord, y_coord = k[0], k[1]
            if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
                if len(k) == 3:
                    conf = k[2]
                    if conf < conf_thres:
                        continue
                cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)

        if kpt_line:
            ndim = kpts.shape[-1]
            for i, sk in enumerate(self.skeleton):
                pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))
                pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))
                if ndim == 3:
                    conf1 = kpts[(sk[0] - 1), 2]
                    conf2 = kpts[(sk[1] - 1), 2]
                    if conf1 < conf_thres or conf2 < conf_thres:
                        continue
                if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:
                    continue
                if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:
                    continue
                cv2.line(
                    self.im,
                    pos1,
                    pos2,
                    kpt_color or self.limb_color[i].tolist(),
                    thickness=int(np.ceil(self.lw / 2)),
                    lineType=cv2.LINE_AA,
                )
        if self.pil:
            # Convert im back to PIL and update draw
            self.fromarray(self.im)

    def rectangle(self, xy, fill=None, outline=None, width=1):
        """Add rectangle to image (PIL-only)."""
        self.draw.rectangle(xy, fill, outline, width)

    def text(self, xy, text, txt_color=(255, 255, 255), anchor="top", box_style=False):
        """Adds text to an image using PIL or cv2."""
        if anchor == "bottom":  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        if self.pil:
            if box_style:
                w, h = self.font.getsize(text)
                self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color)
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            if "\n" in text:
                lines = text.split("\n")
                _, h = self.font.getsize(text)
                for line in lines:
                    self.draw.text(xy, line, fill=txt_color, font=self.font)
                    xy[1] += h
            else:
                self.draw.text(xy, text, fill=txt_color, font=self.font)
        else:
            if box_style:
                w, h = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]  # text width, height
                h += 3  # add pixels to pad text
                outside = xy[1] >= h  # label fits outside box
                p2 = xy[0] + w, xy[1] - h if outside else xy[1] + h
                cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA)  # filled
                # Using `txt_color` for background and draw fg with white color
                txt_color = (255, 255, 255)
            cv2.putText(self.im, text, xy, 0, self.sf, txt_color, thickness=self.tf, lineType=cv2.LINE_AA)

    def fromarray(self, im):
        """Update self.im from a numpy array."""
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)

    def result(self):
        """Return annotated image as array."""
        return np.asarray(self.im)

    def show(self, title=None):
        """Show the annotated image."""
        im = Image.fromarray(np.asarray(self.im)[..., ::-1])  # Convert numpy array to PIL Image with RGB to BGR
        if IS_COLAB or IS_KAGGLE:  # can not use IS_JUPYTER as will run for all ipython environments
            try:
                display(im)  # noqa - display() function only available in ipython environments
            except ImportError as e:
                LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}")
        else:
            im.show(title=title)

    def save(self, filename="image.jpg"):
        """Save the annotated image to 'filename'."""
        cv2.imwrite(filename, np.asarray(self.im))

    def get_bbox_dimension(self, bbox=None):
        """

        Calculate the area of a bounding box.



        Args:

            bbox (tuple): Bounding box coordinates in the format (x_min, y_min, x_max, y_max).



        Returns:

            angle (degree): Degree value of angle between three points

        """
        x_min, y_min, x_max, y_max = bbox
        width = x_max - x_min
        height = y_max - y_min
        return width, height, width * height

    def draw_region(self, reg_pts=None, color=(0, 255, 0), thickness=5):
        """

        Draw region line.



        Args:

            reg_pts (list): Region Points (for line 2 points, for region 4 points)

            color (tuple): Region Color value

            thickness (int): Region area thickness value

        """
        cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=thickness)

        # Draw small circles at the corner points
        for point in reg_pts:
            cv2.circle(self.im, (point[0], point[1]), thickness * 2, color, -1)  # -1 fills the circle

    def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
        """

        Draw centroid point and track trails.



        Args:

            track (list): object tracking points for trails display

            color (tuple): tracks line color

            track_thickness (int): track line thickness value

        """
        points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
        cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)

    def queue_counts_display(self, label, points=None, region_color=(255, 255, 255), txt_color=(0, 0, 0)):
        """

        Displays queue counts on an image centered at the points with customizable font size and colors.



        Args:

            label (str): queue counts label

            points (tuple): region points for center point calculation to display text

            region_color (tuple): RGB queue region color.

            txt_color (tuple): RGB text display color.

        """
        x_values = [point[0] for point in points]
        y_values = [point[1] for point in points]
        center_x = sum(x_values) // len(points)
        center_y = sum(y_values) // len(points)

        text_size = cv2.getTextSize(label, 0, fontScale=self.sf, thickness=self.tf)[0]
        text_width = text_size[0]
        text_height = text_size[1]

        rect_width = text_width + 20
        rect_height = text_height + 20
        rect_top_left = (center_x - rect_width // 2, center_y - rect_height // 2)
        rect_bottom_right = (center_x + rect_width // 2, center_y + rect_height // 2)
        cv2.rectangle(self.im, rect_top_left, rect_bottom_right, region_color, -1)

        text_x = center_x - text_width // 2
        text_y = center_y + text_height // 2

        # Draw text
        cv2.putText(
            self.im,
            label,
            (text_x, text_y),
            0,
            fontScale=self.sf,
            color=txt_color,
            thickness=self.tf,
            lineType=cv2.LINE_AA,
        )

    def display_objects_labels(self, im0, text, txt_color, bg_color, x_center, y_center, margin):
        """

        Display the bounding boxes labels in parking management app.



        Args:

            im0 (ndarray): inference image

            text (str): object/class name

            txt_color (tuple): display color for text foreground

            bg_color (tuple): display color for text background

            x_center (float): x position center point for bounding box

            y_center (float): y position center point for bounding box

            margin (int): gap between text and rectangle for better display

        """
        text_size = cv2.getTextSize(text, 0, fontScale=self.sf, thickness=self.tf)[0]
        text_x = x_center - text_size[0] // 2
        text_y = y_center + text_size[1] // 2

        rect_x1 = text_x - margin
        rect_y1 = text_y - text_size[1] - margin
        rect_x2 = text_x + text_size[0] + margin
        rect_y2 = text_y + margin
        cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
        cv2.putText(im0, text, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)

    def display_analytics(self, im0, text, txt_color, bg_color, margin):
        """

        Display the overall statistics for parking lots.



        Args:

            im0 (ndarray): inference image

            text (dict): labels dictionary

            txt_color (tuple): display color for text foreground

            bg_color (tuple): display color for text background

            margin (int): gap between text and rectangle for better display

        """
        horizontal_gap = int(im0.shape[1] * 0.02)
        vertical_gap = int(im0.shape[0] * 0.01)
        text_y_offset = 0
        for label, value in text.items():
            txt = f"{label}: {value}"
            text_size = cv2.getTextSize(txt, 0, self.sf, self.tf)[0]
            if text_size[0] < 5 or text_size[1] < 5:
                text_size = (5, 5)
            text_x = im0.shape[1] - text_size[0] - margin * 2 - horizontal_gap
            text_y = text_y_offset + text_size[1] + margin * 2 + vertical_gap
            rect_x1 = text_x - margin * 2
            rect_y1 = text_y - text_size[1] - margin * 2
            rect_x2 = text_x + text_size[0] + margin * 2
            rect_y2 = text_y + margin * 2
            cv2.rectangle(im0, (rect_x1, rect_y1), (rect_x2, rect_y2), bg_color, -1)
            cv2.putText(im0, txt, (text_x, text_y), 0, self.sf, txt_color, self.tf, lineType=cv2.LINE_AA)
            text_y_offset = rect_y2

    @staticmethod
    def estimate_pose_angle(a, b, c):
        """

        Calculate the pose angle for object.



        Args:

            a (float) : The value of pose point a

            b (float): The value of pose point b

            c (float): The value o pose point c



        Returns:

            angle (degree): Degree value of angle between three points

        """
        a, b, c = np.array(a), np.array(b), np.array(c)
        radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
        angle = np.abs(radians * 180.0 / np.pi)
        if angle > 180.0:
            angle = 360 - angle
        return angle

    def draw_specific_points(self, keypoints, indices=None, radius=2, conf_thres=0.25):
        """

        Draw specific keypoints for gym steps counting.



        Args:

            keypoints (list): Keypoints data to be plotted.

            indices (list, optional): Keypoint indices to be plotted. Defaults to [2, 5, 7].

            radius (int, optional): Keypoint radius. Defaults to 2.

            conf_thres (float, optional): Confidence threshold for keypoints. Defaults to 0.25.



        Returns:

            (numpy.ndarray): Image with drawn keypoints.



        Note:

            Keypoint format: [x, y] or [x, y, confidence].

            Modifies self.im in-place.

        """
        indices = indices or [2, 5, 7]
        points = [(int(k[0]), int(k[1])) for i, k in enumerate(keypoints) if i in indices and k[2] >= conf_thres]

        # Draw lines between consecutive points
        for start, end in zip(points[:-1], points[1:]):
            cv2.line(self.im, start, end, (0, 255, 0), 2, lineType=cv2.LINE_AA)

        # Draw circles for keypoints
        for pt in points:
            cv2.circle(self.im, pt, radius, (0, 0, 255), -1, lineType=cv2.LINE_AA)

        return self.im

    def plot_workout_information(self, display_text, position, color=(104, 31, 17), txt_color=(255, 255, 255)):
        """

        Draw text with a background on the image.



        Args:

            display_text (str): The text to be displayed.

            position (tuple): Coordinates (x, y) on the image where the text will be placed.

            color (tuple, optional): Text background color

            txt_color (tuple, optional): Text foreground color

        """
        (text_width, text_height), _ = cv2.getTextSize(display_text, 0, self.sf, self.tf)

        # Draw background rectangle
        cv2.rectangle(
            self.im,
            (position[0], position[1] - text_height - 5),
            (position[0] + text_width + 10, position[1] - text_height - 5 + text_height + 10 + self.tf),
            color,
            -1,
        )
        # Draw text
        cv2.putText(self.im, display_text, position, 0, self.sf, txt_color, self.tf)

        return text_height

    def plot_angle_and_count_and_stage(

        self, angle_text, count_text, stage_text, center_kpt, color=(104, 31, 17), txt_color=(255, 255, 255)

    ):
        """

        Plot the pose angle, count value, and step stage.



        Args:

            angle_text (str): Angle value for workout monitoring

            count_text (str): Counts value for workout monitoring

            stage_text (str): Stage decision for workout monitoring

            center_kpt (list): Centroid pose index for workout monitoring

            color (tuple, optional): Text background color

            txt_color (tuple, optional): Text foreground color

        """
        # Format text
        angle_text, count_text, stage_text = f" {angle_text:.2f}", f"Steps : {count_text}", f" {stage_text}"

        # Draw angle, count and stage text
        angle_height = self.plot_workout_information(
            angle_text, (int(center_kpt[0]), int(center_kpt[1])), color, txt_color
        )
        count_height = self.plot_workout_information(
            count_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + 20), color, txt_color
        )
        self.plot_workout_information(
            stage_text, (int(center_kpt[0]), int(center_kpt[1]) + angle_height + count_height + 40), color, txt_color
        )

    def seg_bbox(self, mask, mask_color=(255, 0, 255), label=None, txt_color=(255, 255, 255)):
        """

        Function for drawing segmented object in bounding box shape.



        Args:

            mask (np.ndarray): A 2D array of shape (N, 2) containing the contour points of the segmented object.

            mask_color (tuple): RGB color for the contour and label background.

            label (str, optional): Text label for the object. If None, no label is drawn.

            txt_color (tuple): RGB color for the label text.

        """
        if mask.size == 0:  # no masks to plot
            return

        cv2.polylines(self.im, [np.int32([mask])], isClosed=True, color=mask_color, thickness=2)
        text_size, _ = cv2.getTextSize(label, 0, self.sf, self.tf)

        cv2.rectangle(
            self.im,
            (int(mask[0][0]) - text_size[0] // 2 - 10, int(mask[0][1]) - text_size[1] - 10),
            (int(mask[0][0]) + text_size[0] // 2 + 10, int(mask[0][1] + 10)),
            mask_color,
            -1,
        )

        if label:
            cv2.putText(
                self.im, label, (int(mask[0][0]) - text_size[0] // 2, int(mask[0][1])), 0, self.sf, txt_color, self.tf
            )

    def plot_distance_and_line(self, pixels_distance, centroids, line_color, centroid_color):
        """

        Plot the distance and line on frame.



        Args:

            pixels_distance (float): Pixels distance between two bbox centroids.

            centroids (list): Bounding box centroids data.

            line_color (tuple): RGB distance line color.

            centroid_color (tuple): RGB bounding box centroid color.

        """
        # Get the text size
        (text_width_m, text_height_m), _ = cv2.getTextSize(
            f"Pixels Distance: {pixels_distance:.2f}", 0, self.sf, self.tf
        )

        # Define corners with 10-pixel margin and draw rectangle
        top_left = (15, 25)
        bottom_right = (15 + text_width_m + 20, 25 + text_height_m + 20)
        cv2.rectangle(self.im, top_left, bottom_right, centroid_color, -1)

        # Calculate the position for the text with a 10-pixel margin and draw text
        text_position = (top_left[0] + 10, top_left[1] + text_height_m + 10)
        cv2.putText(
            self.im,
            f"Pixels Distance: {pixels_distance:.2f}",
            text_position,
            0,
            self.sf,
            (255, 255, 255),
            self.tf,
            cv2.LINE_AA,
        )

        cv2.line(self.im, centroids[0], centroids[1], line_color, 3)
        cv2.circle(self.im, centroids[0], 6, centroid_color, -1)
        cv2.circle(self.im, centroids[1], 6, centroid_color, -1)

    def visioneye(self, box, center_point, color=(235, 219, 11), pin_color=(255, 0, 255)):
        """

        Function for pinpoint human-vision eye mapping and plotting.



        Args:

            box (list): Bounding box coordinates

            center_point (tuple): center point for vision eye view

            color (tuple): object centroid and line color value

            pin_color (tuple): visioneye point color value

        """
        center_bbox = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
        cv2.circle(self.im, center_point, self.tf * 2, pin_color, -1)
        cv2.circle(self.im, center_bbox, self.tf * 2, color, -1)
        cv2.line(self.im, center_point, center_bbox, color, self.tf)


@TryExcept()  # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()
def plot_labels(boxes, cls, names=(), save_dir=Path(""), on_plot=None):
    """Plot training labels including class histograms and box statistics."""
    import pandas  # scope for faster 'import ultralytics'
    import seaborn  # scope for faster 'import ultralytics'

    # Filter matplotlib>=3.7.2 warning and Seaborn use_inf and is_categorical FutureWarnings
    warnings.filterwarnings("ignore", category=UserWarning, message="The figure layout has changed to tight")
    warnings.filterwarnings("ignore", category=FutureWarning)

    # Plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    nc = int(cls.max() + 1)  # number of classes
    boxes = boxes[:1000000]  # limit to 1M boxes
    x = pandas.DataFrame(boxes, columns=["x", "y", "width", "height"])

    # Seaborn correlogram
    seaborn.pairplot(x, corner=True, diag_kind="auto", kind="hist", diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / "labels_correlogram.jpg", dpi=200)
    plt.close()

    # Matplotlib labels
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    for i in range(nc):
        y[2].patches[i].set_color([x / 255 for x in colors(i)])
    ax[0].set_ylabel("instances")
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel("classes")
    seaborn.histplot(x, x="x", y="y", ax=ax[2], bins=50, pmax=0.9)
    seaborn.histplot(x, x="width", y="height", ax=ax[3], bins=50, pmax=0.9)

    # Rectangles
    boxes[:, 0:2] = 0.5  # center
    boxes = ops.xywh2xyxy(boxes) * 1000
    img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255)
    for cls, box in zip(cls[:500], boxes[:500]):
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis("off")

    for a in [0, 1, 2, 3]:
        for s in ["top", "right", "left", "bottom"]:
            ax[a].spines[s].set_visible(False)

    fname = save_dir / "labels.jpg"
    plt.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)


def save_one_box(xyxy, im, file=Path("im.jpg"), gain=1.02, pad=10, square=False, BGR=False, save=True):
    """

    Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.



    This function takes a bounding box and an image, and then saves a cropped portion of the image according

    to the bounding box. Optionally, the crop can be squared, and the function allows for gain and padding

    adjustments to the bounding box.



    Args:

        xyxy (torch.Tensor or list): A tensor or list representing the bounding box in xyxy format.

        im (numpy.ndarray): The input image.

        file (Path, optional): The path where the cropped image will be saved. Defaults to 'im.jpg'.

        gain (float, optional): A multiplicative factor to increase the size of the bounding box. Defaults to 1.02.

        pad (int, optional): The number of pixels to add to the width and height of the bounding box. Defaults to 10.

        square (bool, optional): If True, the bounding box will be transformed into a square. Defaults to False.

        BGR (bool, optional): If True, the image will be saved in BGR format, otherwise in RGB. Defaults to False.

        save (bool, optional): If True, the cropped image will be saved to disk. Defaults to True.



    Returns:

        (numpy.ndarray): The cropped image.



    Example:

        ```python

        from ultralytics.utils.plotting import save_one_box



        xyxy = [50, 50, 150, 150]

        im = cv2.imread("image.jpg")

        cropped_im = save_one_box(xyxy, im, file="cropped.jpg", square=True)

        ```

    """
    if not isinstance(xyxy, torch.Tensor):  # may be list
        xyxy = torch.stack(xyxy)
    b = ops.xyxy2xywh(xyxy.view(-1, 4))  # boxes
    if square:
        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
    xyxy = ops.xywh2xyxy(b).long()
    xyxy = ops.clip_boxes(xyxy, im.shape)
    crop = im[int(xyxy[0, 1]) : int(xyxy[0, 3]), int(xyxy[0, 0]) : int(xyxy[0, 2]), :: (1 if BGR else -1)]
    if save:
        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
        f = str(increment_path(file).with_suffix(".jpg"))
        # cv2.imwrite(f, crop)  # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
        Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0)  # save RGB
    return crop


@threaded
def plot_images(

    images: Union[torch.Tensor, np.ndarray],

    batch_idx: Union[torch.Tensor, np.ndarray],

    cls: Union[torch.Tensor, np.ndarray],

    bboxes: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.float32),

    confs: Optional[Union[torch.Tensor, np.ndarray]] = None,

    masks: Union[torch.Tensor, np.ndarray] = np.zeros(0, dtype=np.uint8),

    kpts: Union[torch.Tensor, np.ndarray] = np.zeros((0, 51), dtype=np.float32),

    paths: Optional[List[str]] = None,

    fname: str = "images.jpg",

    names: Optional[Dict[int, str]] = None,

    on_plot: Optional[Callable] = None,

    max_size: int = 1920,

    max_subplots: int = 16,

    save: bool = True,

    conf_thres: float = 0.25,

) -> Optional[np.ndarray]:
    """

    Plot image grid with labels, bounding boxes, masks, and keypoints.



    Args:

        images: Batch of images to plot. Shape: (batch_size, channels, height, width).

        batch_idx: Batch indices for each detection. Shape: (num_detections,).

        cls: Class labels for each detection. Shape: (num_detections,).

        bboxes: Bounding boxes for each detection. Shape: (num_detections, 4) or (num_detections, 5) for rotated boxes.

        confs: Confidence scores for each detection. Shape: (num_detections,).

        masks: Instance segmentation masks. Shape: (num_detections, height, width) or (1, height, width).

        kpts: Keypoints for each detection. Shape: (num_detections, 51).

        paths: List of file paths for each image in the batch.

        fname: Output filename for the plotted image grid.

        names: Dictionary mapping class indices to class names.

        on_plot: Optional callback function to be called after saving the plot.

        max_size: Maximum size of the output image grid.

        max_subplots: Maximum number of subplots in the image grid.

        save: Whether to save the plotted image grid to a file.

        conf_thres: Confidence threshold for displaying detections.



    Returns:

        np.ndarray: Plotted image grid as a numpy array if save is False, None otherwise.



    Note:

        This function supports both tensor and numpy array inputs. It will automatically

        convert tensor inputs to numpy arrays for processing.

    """
    if isinstance(images, torch.Tensor):
        images = images.cpu().float().numpy()
    if isinstance(cls, torch.Tensor):
        cls = cls.cpu().numpy()
    if isinstance(bboxes, torch.Tensor):
        bboxes = bboxes.cpu().numpy()
    if isinstance(masks, torch.Tensor):
        masks = masks.cpu().numpy().astype(int)
    if isinstance(kpts, torch.Tensor):
        kpts = kpts.cpu().numpy()
    if isinstance(batch_idx, torch.Tensor):
        batch_idx = batch_idx.cpu().numpy()

    bs, _, h, w = images.shape  # batch size, _, height, width
    bs = min(bs, max_subplots)  # limit plot images
    ns = np.ceil(bs**0.5)  # number of subplots (square)
    if np.max(images[0]) <= 1:
        images *= 255  # de-normalise (optional)

    # Build Image
    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        mosaic[y : y + h, x : x + w, :] = images[i].transpose(1, 2, 0)

    # Resize (optional)
    scale = max_size / ns / max(h, w)
    if scale < 1:
        h = math.ceil(scale * h)
        w = math.ceil(scale * w)
        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))

    # Annotate
    fs = int((h + w) * ns * 0.01)  # font size
    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
    for i in range(bs):
        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
        if paths:
            annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
        if len(cls) > 0:
            idx = batch_idx == i
            classes = cls[idx].astype("int")
            labels = confs is None

            if len(bboxes):
                boxes = bboxes[idx]
                conf = confs[idx] if confs is not None else None  # check for confidence presence (label vs pred)
                if len(boxes):
                    if boxes[:, :4].max() <= 1.1:  # if normalized with tolerance 0.1
                        boxes[..., [0, 2]] *= w  # scale to pixels
                        boxes[..., [1, 3]] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        boxes[..., :4] *= scale
                boxes[..., 0] += x
                boxes[..., 1] += y
                is_obb = boxes.shape[-1] == 5  # xywhr
                boxes = ops.xywhr2xyxyxyxy(boxes) if is_obb else ops.xywh2xyxy(boxes)
                for j, box in enumerate(boxes.astype(np.int64).tolist()):
                    c = classes[j]
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    if labels or conf[j] > conf_thres:
                        label = f"{c}" if labels else f"{c} {conf[j]:.1f}"
                        annotator.box_label(box, label, color=color, rotated=is_obb)

            elif len(classes):
                for c in classes:
                    color = colors(c)
                    c = names.get(c, c) if names else c
                    annotator.text((x, y), f"{c}", txt_color=color, box_style=True)

            # Plot keypoints
            if len(kpts):
                kpts_ = kpts[idx].copy()
                if len(kpts_):
                    if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01:  # if normalized with tolerance .01
                        kpts_[..., 0] *= w  # scale to pixels
                        kpts_[..., 1] *= h
                    elif scale < 1:  # absolute coords need scale if image scales
                        kpts_ *= scale
                kpts_[..., 0] += x
                kpts_[..., 1] += y
                for j in range(len(kpts_)):
                    if labels or conf[j] > conf_thres:
                        annotator.kpts(kpts_[j], conf_thres=conf_thres)

            # Plot masks
            if len(masks):
                if idx.shape[0] == masks.shape[0]:  # overlap_masks=False
                    image_masks = masks[idx]
                else:  # overlap_masks=True
                    image_masks = masks[[i]]  # (1, 640, 640)
                    nl = idx.sum()
                    index = np.arange(nl).reshape((nl, 1, 1)) + 1
                    image_masks = np.repeat(image_masks, nl, axis=0)
                    image_masks = np.where(image_masks == index, 1.0, 0.0)

                im = np.asarray(annotator.im).copy()
                for j in range(len(image_masks)):
                    if labels or conf[j] > conf_thres:
                        color = colors(classes[j])
                        mh, mw = image_masks[j].shape
                        if mh != h or mw != w:
                            mask = image_masks[j].astype(np.uint8)
                            mask = cv2.resize(mask, (w, h))
                            mask = mask.astype(bool)
                        else:
                            mask = image_masks[j].astype(bool)
                        try:
                            im[y : y + h, x : x + w, :][mask] = (
                                im[y : y + h, x : x + w, :][mask] * 0.4 + np.array(color) * 0.6
                            )
                        except:  # noqa E722
                            pass
                annotator.fromarray(im)
    if not save:
        return np.asarray(annotator.im)
    annotator.im.save(fname)  # save
    if on_plot:
        on_plot(fname)


@plt_settings()
def plot_results(file="path/to/results.csv", dir="", segment=False, pose=False, classify=False, on_plot=None):
    """

    Plot training results from a results CSV file. The function supports various types of data including segmentation,

    pose estimation, and classification. Plots are saved as 'results.png' in the directory where the CSV is located.



    Args:

        file (str, optional): Path to the CSV file containing the training results. Defaults to 'path/to/results.csv'.

        dir (str, optional): Directory where the CSV file is located if 'file' is not provided. Defaults to ''.

        segment (bool, optional): Flag to indicate if the data is for segmentation. Defaults to False.

        pose (bool, optional): Flag to indicate if the data is for pose estimation. Defaults to False.

        classify (bool, optional): Flag to indicate if the data is for classification. Defaults to False.

        on_plot (callable, optional): Callback function to be executed after plotting. Takes filename as an argument.

            Defaults to None.



    Example:

        ```python

        from ultralytics.utils.plotting import plot_results



        plot_results("path/to/results.csv", segment=True)

        ```

    """
    import pandas as pd  # scope for faster 'import ultralytics'
    from scipy.ndimage import gaussian_filter1d

    save_dir = Path(file).parent if file else Path(dir)
    if classify:
        fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True)
        index = [1, 4, 2, 3]
    elif segment:
        fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]
    elif pose:
        fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13]
    else:
        fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
        index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
    ax = ax.ravel()
    files = list(save_dir.glob("results*.csv"))
    assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate(index):
                y = data.values[:, j].astype("float")
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=8)  # actual results
                ax[i].plot(x, gaussian_filter1d(y, sigma=3), ":", label="smooth", linewidth=2)  # smoothing line
                ax[i].set_title(s[j], fontsize=12)
                # if j in {8, 9, 10}:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.warning(f"WARNING: Plotting error for {f}: {e}")
    ax[1].legend()
    fname = save_dir / "results.png"
    fig.savefig(fname, dpi=200)
    plt.close()
    if on_plot:
        on_plot(fname)


def plt_color_scatter(v, f, bins=20, cmap="viridis", alpha=0.8, edgecolors="none"):
    """

    Plots a scatter plot with points colored based on a 2D histogram.



    Args:

        v (array-like): Values for the x-axis.

        f (array-like): Values for the y-axis.

        bins (int, optional): Number of bins for the histogram. Defaults to 20.

        cmap (str, optional): Colormap for the scatter plot. Defaults to 'viridis'.

        alpha (float, optional): Alpha for the scatter plot. Defaults to 0.8.

        edgecolors (str, optional): Edge colors for the scatter plot. Defaults to 'none'.



    Examples:

        >>> v = np.random.rand(100)

        >>> f = np.random.rand(100)

        >>> plt_color_scatter(v, f)

    """
    # Calculate 2D histogram and corresponding colors
    hist, xedges, yedges = np.histogram2d(v, f, bins=bins)
    colors = [
        hist[
            min(np.digitize(v[i], xedges, right=True) - 1, hist.shape[0] - 1),
            min(np.digitize(f[i], yedges, right=True) - 1, hist.shape[1] - 1),
        ]
        for i in range(len(v))
    ]

    # Scatter plot
    plt.scatter(v, f, c=colors, cmap=cmap, alpha=alpha, edgecolors=edgecolors)


def plot_tune_results(csv_file="tune_results.csv"):
    """

    Plot the evolution results stored in an 'tune_results.csv' file. The function generates a scatter plot for each key

    in the CSV, color-coded based on fitness scores. The best-performing configurations are highlighted on the plots.



    Args:

        csv_file (str, optional): Path to the CSV file containing the tuning results. Defaults to 'tune_results.csv'.



    Examples:

        >>> plot_tune_results("path/to/tune_results.csv")

    """
    import pandas as pd  # scope for faster 'import ultralytics'
    from scipy.ndimage import gaussian_filter1d

    def _save_one_file(file):
        """Save one matplotlib plot to 'file'."""
        plt.savefig(file, dpi=200)
        plt.close()
        LOGGER.info(f"Saved {file}")

    # Scatter plots for each hyperparameter
    csv_file = Path(csv_file)
    data = pd.read_csv(csv_file)
    num_metrics_columns = 1
    keys = [x.strip() for x in data.columns][num_metrics_columns:]
    x = data.values
    fitness = x[:, 0]  # fitness
    j = np.argmax(fitness)  # max fitness index
    n = math.ceil(len(keys) ** 0.5)  # columns and rows in plot
    plt.figure(figsize=(10, 10), tight_layout=True)
    for i, k in enumerate(keys):
        v = x[:, i + num_metrics_columns]
        mu = v[j]  # best single result
        plt.subplot(n, n, i + 1)
        plt_color_scatter(v, fitness, cmap="viridis", alpha=0.8, edgecolors="none")
        plt.plot(mu, fitness.max(), "k+", markersize=15)
        plt.title(f"{k} = {mu:.3g}", fontdict={"size": 9})  # limit to 40 characters
        plt.tick_params(axis="both", labelsize=8)  # Set axis label size to 8
        if i % n != 0:
            plt.yticks([])
    _save_one_file(csv_file.with_name("tune_scatter_plots.png"))

    # Fitness vs iteration
    x = range(1, len(fitness) + 1)
    plt.figure(figsize=(10, 6), tight_layout=True)
    plt.plot(x, fitness, marker="o", linestyle="none", label="fitness")
    plt.plot(x, gaussian_filter1d(fitness, sigma=3), ":", label="smoothed", linewidth=2)  # smoothing line
    plt.title("Fitness vs Iteration")
    plt.xlabel("Iteration")
    plt.ylabel("Fitness")
    plt.grid(True)
    plt.legend()
    _save_one_file(csv_file.with_name("tune_fitness.png"))


def output_to_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, ops.xyxy2xywh(box), conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]


def output_to_rotated_target(output, max_det=300):
    """Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting."""
    targets = []
    for i, o in enumerate(output):
        box, conf, cls, angle = o[:max_det].cpu().split((4, 1, 1, 1), 1)
        j = torch.full((conf.shape[0], 1), i)
        targets.append(torch.cat((j, cls, box, angle, conf), 1))
    targets = torch.cat(targets, 0).numpy()
    return targets[:, 0], targets[:, 1], targets[:, 2:-1], targets[:, -1]


def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detect/exp")):
    """

    Visualize feature maps of a given model module during inference.



    Args:

        x (torch.Tensor): Features to be visualized.

        module_type (str): Module type.

        stage (int): Module stage within the model.

        n (int, optional): Maximum number of feature maps to plot. Defaults to 32.

        save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').

    """
    for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}:  # all model heads
        if m in module_type:
            return
    if isinstance(x, torch.Tensor):
        _, channels, height, width = x.shape  # batch, channels, height, width
        if height > 1 and width > 1:
            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
            n = min(n, channels)  # number of plots
            _, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
            ax = ax.ravel()
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(n):
                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
                ax[i].axis("off")

            LOGGER.info(f"Saving {f}... ({n}/{channels})")
            plt.savefig(f, dpi=300, bbox_inches="tight")
            plt.close()
            np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy())  # npy save