|
|
|
"""Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch."""
|
|
|
|
import os
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
|
|
from ultralytics.utils.torch_utils import autocast, profile
|
|
|
|
|
|
def check_train_batch_size(model, imgsz=640, amp=True, batch=-1):
|
|
"""
|
|
Compute optimal YOLO training batch size using the autobatch() function.
|
|
|
|
Args:
|
|
model (torch.nn.Module): YOLO model to check batch size for.
|
|
imgsz (int, optional): Image size used for training.
|
|
amp (bool, optional): Use automatic mixed precision if True.
|
|
batch (float, optional): Fraction of GPU memory to use. If -1, use default.
|
|
|
|
Returns:
|
|
(int): Optimal batch size computed using the autobatch() function.
|
|
|
|
Note:
|
|
If 0.0 < batch < 1.0, it's used as the fraction of GPU memory to use.
|
|
Otherwise, a default fraction of 0.6 is used.
|
|
"""
|
|
with autocast(enabled=amp):
|
|
return autobatch(deepcopy(model).train(), imgsz, fraction=batch if 0.0 < batch < 1.0 else 0.6)
|
|
|
|
|
|
def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch):
|
|
"""
|
|
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
|
|
|
|
Args:
|
|
model (torch.nn.module): YOLO model to compute batch size for.
|
|
imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
|
|
fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60.
|
|
batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
|
|
|
|
Returns:
|
|
(int): The optimal batch size.
|
|
"""
|
|
|
|
prefix = colorstr("AutoBatch: ")
|
|
LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz} at {fraction * 100}% CUDA memory utilization.")
|
|
device = next(model.parameters()).device
|
|
if device.type in {"cpu", "mps"}:
|
|
LOGGER.info(f"{prefix} ⚠️ intended for CUDA devices, using default batch-size {batch_size}")
|
|
return batch_size
|
|
if torch.backends.cudnn.benchmark:
|
|
LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
|
|
return batch_size
|
|
|
|
|
|
gb = 1 << 30
|
|
d = f"CUDA:{os.getenv('CUDA_VISIBLE_DEVICES', '0').strip()[0]}"
|
|
properties = torch.cuda.get_device_properties(device)
|
|
t = properties.total_memory / gb
|
|
r = torch.cuda.memory_reserved(device) / gb
|
|
a = torch.cuda.memory_allocated(device) / gb
|
|
f = t - (r + a)
|
|
LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
|
|
|
|
|
|
batch_sizes = [1, 2, 4, 8, 16] if t < 16 else [1, 2, 4, 8, 16, 32, 64]
|
|
try:
|
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
|
results = profile(img, model, n=1, device=device)
|
|
|
|
|
|
y = [x[2] for x in results if x]
|
|
p = np.polyfit(batch_sizes[: len(y)], y, deg=1)
|
|
b = int((f * fraction - p[1]) / p[0])
|
|
if None in results:
|
|
i = results.index(None)
|
|
if b >= batch_sizes[i]:
|
|
b = batch_sizes[max(i - 1, 0)]
|
|
if b < 1 or b > 1024:
|
|
b = batch_size
|
|
LOGGER.info(f"{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.")
|
|
|
|
fraction = (np.polyval(p, b) + r + a) / t
|
|
LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
|
|
return b
|
|
except Exception as e:
|
|
LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.")
|
|
return batch_size
|
|
finally:
|
|
torch.cuda.empty_cache()
|
|
|