# Ultralytics YOLO 🚀, AGPL-3.0 license """Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch.""" import os from copy import deepcopy import numpy as np import torch from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr from ultralytics.utils.torch_utils import autocast, profile def check_train_batch_size(model, imgsz=640, amp=True, batch=-1): """ Compute optimal YOLO training batch size using the autobatch() function. Args: model (torch.nn.Module): YOLO model to check batch size for. imgsz (int, optional): Image size used for training. amp (bool, optional): Use automatic mixed precision if True. batch (float, optional): Fraction of GPU memory to use. If -1, use default. Returns: (int): Optimal batch size computed using the autobatch() function. Note: If 0.0 < batch < 1.0, it's used as the fraction of GPU memory to use. Otherwise, a default fraction of 0.6 is used. """ with autocast(enabled=amp): return autobatch(deepcopy(model).train(), imgsz, fraction=batch if 0.0 < batch < 1.0 else 0.6) def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch): """ Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory. Args: model (torch.nn.module): YOLO model to compute batch size for. imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640. fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60. batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16. Returns: (int): The optimal batch size. """ # Check device prefix = colorstr("AutoBatch: ") LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz} at {fraction * 100}% CUDA memory utilization.") device = next(model.parameters()).device # get model device if device.type in {"cpu", "mps"}: LOGGER.info(f"{prefix} ⚠️ intended for CUDA devices, using default batch-size {batch_size}") return batch_size if torch.backends.cudnn.benchmark: LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}") return batch_size # Inspect CUDA memory gb = 1 << 30 # bytes to GiB (1024 ** 3) d = f"CUDA:{os.getenv('CUDA_VISIBLE_DEVICES', '0').strip()[0]}" # 'CUDA:0' properties = torch.cuda.get_device_properties(device) # device properties t = properties.total_memory / gb # GiB total r = torch.cuda.memory_reserved(device) / gb # GiB reserved a = torch.cuda.memory_allocated(device) / gb # GiB allocated f = t - (r + a) # GiB free LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free") # Profile batch sizes batch_sizes = [1, 2, 4, 8, 16] if t < 16 else [1, 2, 4, 8, 16, 32, 64] try: img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] results = profile(img, model, n=1, device=device) # Fit a solution y = [x[2] for x in results if x] # memory [2] p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) if None in results: # some sizes failed i = results.index(None) # first fail index if b >= batch_sizes[i]: # y intercept above failure point b = batch_sizes[max(i - 1, 0)] # select prior safe point if b < 1 or b > 1024: # b outside of safe range b = batch_size LOGGER.info(f"{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.") fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅") return b except Exception as e: LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.") return batch_size finally: torch.cuda.empty_cache()