|
|
|
|
|
from multiprocessing.pool import ThreadPool
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
from ultralytics.utils import LOGGER, NUM_THREADS, ops
|
|
from ultralytics.utils.checks import check_requirements
|
|
from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou
|
|
from ultralytics.utils.plotting import output_to_target, plot_images
|
|
|
|
|
|
class SegmentationValidator(DetectionValidator):
|
|
"""
|
|
A class extending the DetectionValidator class for validation based on a segmentation model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.models.yolo.segment import SegmentationValidator
|
|
|
|
args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml")
|
|
validator = SegmentationValidator(args=args)
|
|
validator()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
|
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
|
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
|
self.plot_masks = None
|
|
self.process = None
|
|
self.args.task = "segment"
|
|
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
|
|
|
def preprocess(self, batch):
|
|
"""Preprocesses batch by converting masks to float and sending to device."""
|
|
batch = super().preprocess(batch)
|
|
batch["masks"] = batch["masks"].to(self.device).float()
|
|
return batch
|
|
|
|
def init_metrics(self, model):
|
|
"""Initialize metrics and select mask processing function based on save_json flag."""
|
|
super().init_metrics(model)
|
|
self.plot_masks = []
|
|
if self.args.save_json:
|
|
check_requirements("pycocotools>=2.0.6")
|
|
|
|
self.process = ops.process_mask_native if self.args.save_json or self.args.save_txt else ops.process_mask
|
|
self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])
|
|
|
|
def get_desc(self):
|
|
"""Return a formatted description of evaluation metrics."""
|
|
return ("%22s" + "%11s" * 10) % (
|
|
"Class",
|
|
"Images",
|
|
"Instances",
|
|
"Box(P",
|
|
"R",
|
|
"mAP50",
|
|
"mAP50-95)",
|
|
"Mask(P",
|
|
"R",
|
|
"mAP50",
|
|
"mAP50-95)",
|
|
)
|
|
|
|
def postprocess(self, preds):
|
|
"""Post-processes YOLO predictions and returns output detections with proto."""
|
|
p = ops.non_max_suppression(
|
|
preds[0],
|
|
self.args.conf,
|
|
self.args.iou,
|
|
labels=self.lb,
|
|
multi_label=True,
|
|
agnostic=self.args.single_cls or self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
nc=self.nc,
|
|
)
|
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]
|
|
return p, proto
|
|
|
|
def _prepare_batch(self, si, batch):
|
|
"""Prepares a batch for training or inference by processing images and targets."""
|
|
prepared_batch = super()._prepare_batch(si, batch)
|
|
midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si
|
|
prepared_batch["masks"] = batch["masks"][midx]
|
|
return prepared_batch
|
|
|
|
def _prepare_pred(self, pred, pbatch, proto):
|
|
"""Prepares a batch for training or inference by processing images and targets."""
|
|
predn = super()._prepare_pred(pred, pbatch)
|
|
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"])
|
|
return predn, pred_masks
|
|
|
|
def update_metrics(self, preds, batch):
|
|
"""Metrics."""
|
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
|
self.seen += 1
|
|
npr = len(pred)
|
|
stat = dict(
|
|
conf=torch.zeros(0, device=self.device),
|
|
pred_cls=torch.zeros(0, device=self.device),
|
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
|
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
|
)
|
|
pbatch = self._prepare_batch(si, batch)
|
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
|
nl = len(cls)
|
|
stat["target_cls"] = cls
|
|
stat["target_img"] = cls.unique()
|
|
if npr == 0:
|
|
if nl:
|
|
for k in self.stats.keys():
|
|
self.stats[k].append(stat[k])
|
|
if self.args.plots:
|
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
|
continue
|
|
|
|
|
|
gt_masks = pbatch.pop("masks")
|
|
|
|
if self.args.single_cls:
|
|
pred[:, 5] = 0
|
|
predn, pred_masks = self._prepare_pred(pred, pbatch, proto)
|
|
stat["conf"] = predn[:, 4]
|
|
stat["pred_cls"] = predn[:, 5]
|
|
|
|
|
|
if nl:
|
|
stat["tp"] = self._process_batch(predn, bbox, cls)
|
|
stat["tp_m"] = self._process_batch(
|
|
predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True
|
|
)
|
|
if self.args.plots:
|
|
self.confusion_matrix.process_batch(predn, bbox, cls)
|
|
|
|
for k in self.stats.keys():
|
|
self.stats[k].append(stat[k])
|
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
|
if self.args.plots and self.batch_i < 3:
|
|
self.plot_masks.append(pred_masks[:15].cpu())
|
|
|
|
|
|
if self.args.save_json:
|
|
self.pred_to_json(
|
|
predn,
|
|
batch["im_file"][si],
|
|
ops.scale_image(
|
|
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
|
pbatch["ori_shape"],
|
|
ratio_pad=batch["ratio_pad"][si],
|
|
),
|
|
)
|
|
if self.args.save_txt:
|
|
self.save_one_txt(
|
|
predn,
|
|
pred_masks,
|
|
self.args.save_conf,
|
|
pbatch["ori_shape"],
|
|
self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt',
|
|
)
|
|
|
|
def finalize_metrics(self, *args, **kwargs):
|
|
"""Sets speed and confusion matrix for evaluation metrics."""
|
|
self.metrics.speed = self.speed
|
|
self.metrics.confusion_matrix = self.confusion_matrix
|
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
|
"""
|
|
Compute correct prediction matrix for a batch based on bounding boxes and optional masks.
|
|
|
|
Args:
|
|
detections (torch.Tensor): Tensor of shape (N, 6) representing detected bounding boxes and
|
|
associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class].
|
|
gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground truth bounding box coordinates.
|
|
Each row is of the format [x1, y1, x2, y2].
|
|
gt_cls (torch.Tensor): Tensor of shape (M,) representing ground truth class indices.
|
|
pred_masks (torch.Tensor | None): Tensor representing predicted masks, if available. The shape should
|
|
match the ground truth masks.
|
|
gt_masks (torch.Tensor | None): Tensor of shape (M, H, W) representing ground truth masks, if available.
|
|
overlap (bool): Flag indicating if overlapping masks should be considered.
|
|
masks (bool): Flag indicating if the batch contains mask data.
|
|
|
|
Returns:
|
|
(torch.Tensor): A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels.
|
|
|
|
Note:
|
|
- If `masks` is True, the function computes IoU between predicted and ground truth masks.
|
|
- If `overlap` is True and `masks` is True, overlapping masks are taken into account when computing IoU.
|
|
|
|
Example:
|
|
```python
|
|
detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]])
|
|
gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]])
|
|
gt_cls = torch.tensor([1, 0])
|
|
correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls)
|
|
```
|
|
"""
|
|
if masks:
|
|
if overlap:
|
|
nl = len(gt_cls)
|
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
|
gt_masks = gt_masks.repeat(nl, 1, 1)
|
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
|
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
|
gt_masks = gt_masks.gt_(0.5)
|
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
|
else:
|
|
iou = box_iou(gt_bboxes, detections[:, :4])
|
|
|
|
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
|
|
|
def plot_val_samples(self, batch, ni):
|
|
"""Plots validation samples with bounding box labels."""
|
|
plot_images(
|
|
batch["img"],
|
|
batch["batch_idx"],
|
|
batch["cls"].squeeze(-1),
|
|
batch["bboxes"],
|
|
masks=batch["masks"],
|
|
paths=batch["im_file"],
|
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
|
names=self.names,
|
|
on_plot=self.on_plot,
|
|
)
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
"""Plots batch predictions with masks and bounding boxes."""
|
|
plot_images(
|
|
batch["img"],
|
|
*output_to_target(preds[0], max_det=15),
|
|
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
|
paths=batch["im_file"],
|
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
|
names=self.names,
|
|
on_plot=self.on_plot,
|
|
)
|
|
self.plot_masks.clear()
|
|
|
|
def save_one_txt(self, predn, pred_masks, save_conf, shape, file):
|
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
|
from ultralytics.engine.results import Results
|
|
|
|
Results(
|
|
np.zeros((shape[0], shape[1]), dtype=np.uint8),
|
|
path=None,
|
|
names=self.names,
|
|
boxes=predn[:, :6],
|
|
masks=pred_masks,
|
|
).save_txt(file, save_conf=save_conf)
|
|
|
|
def pred_to_json(self, predn, filename, pred_masks):
|
|
"""
|
|
Save one JSON result.
|
|
|
|
Examples:
|
|
>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
|
"""
|
|
from pycocotools.mask import encode
|
|
|
|
def single_encode(x):
|
|
"""Encode predicted masks as RLE and append results to jdict."""
|
|
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
|
|
rle["counts"] = rle["counts"].decode("utf-8")
|
|
return rle
|
|
|
|
stem = Path(filename).stem
|
|
image_id = int(stem) if stem.isnumeric() else stem
|
|
box = ops.xyxy2xywh(predn[:, :4])
|
|
box[:, :2] -= box[:, 2:] / 2
|
|
pred_masks = np.transpose(pred_masks, (2, 0, 1))
|
|
with ThreadPool(NUM_THREADS) as pool:
|
|
rles = pool.map(single_encode, pred_masks)
|
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
|
self.jdict.append(
|
|
{
|
|
"image_id": image_id,
|
|
"category_id": self.class_map[int(p[5])],
|
|
"bbox": [round(x, 3) for x in b],
|
|
"score": round(p[4], 5),
|
|
"segmentation": rles[i],
|
|
}
|
|
)
|
|
|
|
def eval_json(self, stats):
|
|
"""Return COCO-style object detection evaluation metrics."""
|
|
if self.args.save_json and self.is_coco and len(self.jdict):
|
|
anno_json = self.data["path"] / "annotations/instances_val2017.json"
|
|
pred_json = self.save_dir / "predictions.json"
|
|
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
|
try:
|
|
check_requirements("pycocotools>=2.0.6")
|
|
from pycocotools.coco import COCO
|
|
from pycocotools.cocoeval import COCOeval
|
|
|
|
for x in anno_json, pred_json:
|
|
assert x.is_file(), f"{x} file not found"
|
|
anno = COCO(str(anno_json))
|
|
pred = anno.loadRes(str(pred_json))
|
|
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]):
|
|
if self.is_coco:
|
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files]
|
|
eval.evaluate()
|
|
eval.accumulate()
|
|
eval.summarize()
|
|
idx = i * 4 + 2
|
|
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
|
|
:2
|
|
]
|
|
except Exception as e:
|
|
LOGGER.warning(f"pycocotools unable to run: {e}")
|
|
return stats
|
|
|