File size: 14,378 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Ultralytics YOLO 🚀, AGPL-3.0 license

from multiprocessing.pool import ThreadPool
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F

from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import LOGGER, NUM_THREADS, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou
from ultralytics.utils.plotting import output_to_target, plot_images


class SegmentationValidator(DetectionValidator):
    """

    A class extending the DetectionValidator class for validation based on a segmentation model.



    Example:

        ```python

        from ultralytics.models.yolo.segment import SegmentationValidator



        args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml")

        validator = SegmentationValidator(args=args)

        validator()

        ```

    """

    def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
        """Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
        super().__init__(dataloader, save_dir, pbar, args, _callbacks)
        self.plot_masks = None
        self.process = None
        self.args.task = "segment"
        self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)

    def preprocess(self, batch):
        """Preprocesses batch by converting masks to float and sending to device."""
        batch = super().preprocess(batch)
        batch["masks"] = batch["masks"].to(self.device).float()
        return batch

    def init_metrics(self, model):
        """Initialize metrics and select mask processing function based on save_json flag."""
        super().init_metrics(model)
        self.plot_masks = []
        if self.args.save_json:
            check_requirements("pycocotools>=2.0.6")
        # more accurate vs faster
        self.process = ops.process_mask_native if self.args.save_json or self.args.save_txt else ops.process_mask
        self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])

    def get_desc(self):
        """Return a formatted description of evaluation metrics."""
        return ("%22s" + "%11s" * 10) % (
            "Class",
            "Images",
            "Instances",
            "Box(P",
            "R",
            "mAP50",
            "mAP50-95)",
            "Mask(P",
            "R",
            "mAP50",
            "mAP50-95)",
        )

    def postprocess(self, preds):
        """Post-processes YOLO predictions and returns output detections with proto."""
        p = ops.non_max_suppression(
            preds[0],
            self.args.conf,
            self.args.iou,
            labels=self.lb,
            multi_label=True,
            agnostic=self.args.single_cls or self.args.agnostic_nms,
            max_det=self.args.max_det,
            nc=self.nc,
        )
        proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported
        return p, proto

    def _prepare_batch(self, si, batch):
        """Prepares a batch for training or inference by processing images and targets."""
        prepared_batch = super()._prepare_batch(si, batch)
        midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si
        prepared_batch["masks"] = batch["masks"][midx]
        return prepared_batch

    def _prepare_pred(self, pred, pbatch, proto):
        """Prepares a batch for training or inference by processing images and targets."""
        predn = super()._prepare_pred(pred, pbatch)
        pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"])
        return predn, pred_masks

    def update_metrics(self, preds, batch):
        """Metrics."""
        for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
            self.seen += 1
            npr = len(pred)
            stat = dict(
                conf=torch.zeros(0, device=self.device),
                pred_cls=torch.zeros(0, device=self.device),
                tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
                tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
            )
            pbatch = self._prepare_batch(si, batch)
            cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
            nl = len(cls)
            stat["target_cls"] = cls
            stat["target_img"] = cls.unique()
            if npr == 0:
                if nl:
                    for k in self.stats.keys():
                        self.stats[k].append(stat[k])
                    if self.args.plots:
                        self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
                continue

            # Masks
            gt_masks = pbatch.pop("masks")
            # Predictions
            if self.args.single_cls:
                pred[:, 5] = 0
            predn, pred_masks = self._prepare_pred(pred, pbatch, proto)
            stat["conf"] = predn[:, 4]
            stat["pred_cls"] = predn[:, 5]

            # Evaluate
            if nl:
                stat["tp"] = self._process_batch(predn, bbox, cls)
                stat["tp_m"] = self._process_batch(
                    predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True
                )
                if self.args.plots:
                    self.confusion_matrix.process_batch(predn, bbox, cls)

            for k in self.stats.keys():
                self.stats[k].append(stat[k])

            pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
            if self.args.plots and self.batch_i < 3:
                self.plot_masks.append(pred_masks[:15].cpu())  # filter top 15 to plot

            # Save
            if self.args.save_json:
                self.pred_to_json(
                    predn,
                    batch["im_file"][si],
                    ops.scale_image(
                        pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
                        pbatch["ori_shape"],
                        ratio_pad=batch["ratio_pad"][si],
                    ),
                )
            if self.args.save_txt:
                self.save_one_txt(
                    predn,
                    pred_masks,
                    self.args.save_conf,
                    pbatch["ori_shape"],
                    self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt',
                )

    def finalize_metrics(self, *args, **kwargs):
        """Sets speed and confusion matrix for evaluation metrics."""
        self.metrics.speed = self.speed
        self.metrics.confusion_matrix = self.confusion_matrix

    def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False):
        """

        Compute correct prediction matrix for a batch based on bounding boxes and optional masks.



        Args:

            detections (torch.Tensor): Tensor of shape (N, 6) representing detected bounding boxes and

                associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class].

            gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground truth bounding box coordinates.

                Each row is of the format [x1, y1, x2, y2].

            gt_cls (torch.Tensor): Tensor of shape (M,) representing ground truth class indices.

            pred_masks (torch.Tensor | None): Tensor representing predicted masks, if available. The shape should

                match the ground truth masks.

            gt_masks (torch.Tensor | None): Tensor of shape (M, H, W) representing ground truth masks, if available.

            overlap (bool): Flag indicating if overlapping masks should be considered.

            masks (bool): Flag indicating if the batch contains mask data.



        Returns:

            (torch.Tensor): A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels.



        Note:

            - If `masks` is True, the function computes IoU between predicted and ground truth masks.

            - If `overlap` is True and `masks` is True, overlapping masks are taken into account when computing IoU.



        Example:

            ```python

            detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]])

            gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]])

            gt_cls = torch.tensor([1, 0])

            correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls)

            ```

        """
        if masks:
            if overlap:
                nl = len(gt_cls)
                index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
                gt_masks = gt_masks.repeat(nl, 1, 1)  # shape(1,640,640) -> (n,640,640)
                gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
            if gt_masks.shape[1:] != pred_masks.shape[1:]:
                gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
                gt_masks = gt_masks.gt_(0.5)
            iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
        else:  # boxes
            iou = box_iou(gt_bboxes, detections[:, :4])

        return self.match_predictions(detections[:, 5], gt_cls, iou)

    def plot_val_samples(self, batch, ni):
        """Plots validation samples with bounding box labels."""
        plot_images(
            batch["img"],
            batch["batch_idx"],
            batch["cls"].squeeze(-1),
            batch["bboxes"],
            masks=batch["masks"],
            paths=batch["im_file"],
            fname=self.save_dir / f"val_batch{ni}_labels.jpg",
            names=self.names,
            on_plot=self.on_plot,
        )

    def plot_predictions(self, batch, preds, ni):
        """Plots batch predictions with masks and bounding boxes."""
        plot_images(
            batch["img"],
            *output_to_target(preds[0], max_det=15),  # not set to self.args.max_det due to slow plotting speed
            torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
            paths=batch["im_file"],
            fname=self.save_dir / f"val_batch{ni}_pred.jpg",
            names=self.names,
            on_plot=self.on_plot,
        )  # pred
        self.plot_masks.clear()

    def save_one_txt(self, predn, pred_masks, save_conf, shape, file):
        """Save YOLO detections to a txt file in normalized coordinates in a specific format."""
        from ultralytics.engine.results import Results

        Results(
            np.zeros((shape[0], shape[1]), dtype=np.uint8),
            path=None,
            names=self.names,
            boxes=predn[:, :6],
            masks=pred_masks,
        ).save_txt(file, save_conf=save_conf)

    def pred_to_json(self, predn, filename, pred_masks):
        """

        Save one JSON result.



        Examples:

             >>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}

        """
        from pycocotools.mask import encode  # noqa

        def single_encode(x):
            """Encode predicted masks as RLE and append results to jdict."""
            rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
            rle["counts"] = rle["counts"].decode("utf-8")
            return rle

        stem = Path(filename).stem
        image_id = int(stem) if stem.isnumeric() else stem
        box = ops.xyxy2xywh(predn[:, :4])  # xywh
        box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
        pred_masks = np.transpose(pred_masks, (2, 0, 1))
        with ThreadPool(NUM_THREADS) as pool:
            rles = pool.map(single_encode, pred_masks)
        for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
            self.jdict.append(
                {
                    "image_id": image_id,
                    "category_id": self.class_map[int(p[5])],
                    "bbox": [round(x, 3) for x in b],
                    "score": round(p[4], 5),
                    "segmentation": rles[i],
                }
            )

    def eval_json(self, stats):
        """Return COCO-style object detection evaluation metrics."""
        if self.args.save_json and self.is_coco and len(self.jdict):
            anno_json = self.data["path"] / "annotations/instances_val2017.json"  # annotations
            pred_json = self.save_dir / "predictions.json"  # predictions
            LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
            try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
                check_requirements("pycocotools>=2.0.6")
                from pycocotools.coco import COCO  # noqa
                from pycocotools.cocoeval import COCOeval  # noqa

                for x in anno_json, pred_json:
                    assert x.is_file(), f"{x} file not found"
                anno = COCO(str(anno_json))  # init annotations api
                pred = anno.loadRes(str(pred_json))  # init predictions api (must pass string, not Path)
                for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]):
                    if self.is_coco:
                        eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files]  # im to eval
                    eval.evaluate()
                    eval.accumulate()
                    eval.summarize()
                    idx = i * 4 + 2
                    stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
                        :2
                    ]  # update mAP50-95 and mAP50
            except Exception as e:
                LOGGER.warning(f"pycocotools unable to run: {e}")
        return stats