akswelh's picture
Upload 663 files
f6228f9 verified
# Ultralytics YOLO 🚀, AGPL-3.0 license
import glob
import math
import os
import time
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from ultralytics.data.utils import FORMATS_HELP_MSG, IMG_FORMATS, VID_FORMATS
from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.patches import imread
@dataclass
class SourceTypes:
"""
Class to represent various types of input sources for predictions.
This class uses dataclass to define boolean flags for different types of input sources that can be used for
making predictions with YOLO models.
Attributes:
stream (bool): Flag indicating if the input source is a video stream.
screenshot (bool): Flag indicating if the input source is a screenshot.
from_img (bool): Flag indicating if the input source is an image file.
Examples:
>>> source_types = SourceTypes(stream=True, screenshot=False, from_img=False)
>>> print(source_types.stream)
True
>>> print(source_types.from_img)
False
"""
stream: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
class LoadStreams:
"""
Stream Loader for various types of video streams.
Supports RTSP, RTMP, HTTP, and TCP streams. This class handles the loading and processing of multiple video
streams simultaneously, making it suitable for real-time video analysis tasks.
Attributes:
sources (List[str]): The source input paths or URLs for the video streams.
vid_stride (int): Video frame-rate stride.
buffer (bool): Whether to buffer input streams.
running (bool): Flag to indicate if the streaming thread is running.
mode (str): Set to 'stream' indicating real-time capture.
imgs (List[List[np.ndarray]]): List of image frames for each stream.
fps (List[float]): List of FPS for each stream.
frames (List[int]): List of total frames for each stream.
threads (List[Thread]): List of threads for each stream.
shape (List[Tuple[int, int, int]]): List of shapes for each stream.
caps (List[cv2.VideoCapture]): List of cv2.VideoCapture objects for each stream.
bs (int): Batch size for processing.
Methods:
update: Read stream frames in daemon thread.
close: Close stream loader and release resources.
__iter__: Returns an iterator object for the class.
__next__: Returns source paths, transformed, and original images for processing.
__len__: Return the length of the sources object.
Examples:
>>> stream_loader = LoadStreams("rtsp://example.com/stream1.mp4")
>>> for sources, imgs, _ in stream_loader:
... # Process the images
... pass
>>> stream_loader.close()
Notes:
- The class uses threading to efficiently load frames from multiple streams simultaneously.
- It automatically handles YouTube links, converting them to the best available stream URL.
- The class implements a buffer system to manage frame storage and retrieval.
"""
def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
"""Initialize stream loader for multiple video sources, supporting various stream types."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.buffer = buffer # buffer input streams
self.running = True # running flag for Thread
self.mode = "stream"
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.bs = n
self.fps = [0] * n # frames per second
self.frames = [0] * n
self.threads = [None] * n
self.caps = [None] * n # video capture objects
self.imgs = [[] for _ in range(n)] # images
self.shape = [[] for _ in range(n)] # image shapes
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f"{i + 1}/{n}: {s}... "
if urlparse(s).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}: # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Jsn8D3aC840' or 'https://youtu.be/Jsn8D3aC840'
s = get_best_youtube_url(s)
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0 and (IS_COLAB or IS_KAGGLE):
raise NotImplementedError(
"'source=0' webcam not supported in Colab and Kaggle notebooks. "
"Try running 'source=0' in a local environment."
)
self.caps[i] = cv2.VideoCapture(s) # store video capture object
if not self.caps[i].isOpened():
raise ConnectionError(f"{st}Failed to open {s}")
w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
"inf"
) # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
success, im = self.caps[i].read() # guarantee first frame
if not success or im is None:
raise ConnectionError(f"{st}Failed to read images from {s}")
self.imgs[i].append(im)
self.shape[i] = im.shape
self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
self.threads[i].start()
LOGGER.info("") # newline
def update(self, i, cap, stream):
"""Read stream frames in daemon thread and update image buffer."""
n, f = 0, self.frames[i] # frame number, frame array
while self.running and cap.isOpened() and n < (f - 1):
if len(self.imgs[i]) < 30: # keep a <=30-image buffer
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if not success:
im = np.zeros(self.shape[i], dtype=np.uint8)
LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.")
cap.open(stream) # re-open stream if signal was lost
if self.buffer:
self.imgs[i].append(im)
else:
self.imgs[i] = [im]
else:
time.sleep(0.01) # wait until the buffer is empty
def close(self):
"""Terminates stream loader, stops threads, and releases video capture resources."""
self.running = False # stop flag for Thread
for thread in self.threads:
if thread.is_alive():
thread.join(timeout=5) # Add timeout
for cap in self.caps: # Iterate through the stored VideoCapture objects
try:
cap.release() # release video capture
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}")
cv2.destroyAllWindows()
def __iter__(self):
"""Iterates through YOLO image feed and re-opens unresponsive streams."""
self.count = -1
return self
def __next__(self):
"""Returns the next batch of frames from multiple video streams for processing."""
self.count += 1
images = []
for i, x in enumerate(self.imgs):
# Wait until a frame is available in each buffer
while not x:
if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"): # q to quit
self.close()
raise StopIteration
time.sleep(1 / min(self.fps))
x = self.imgs[i]
if not x:
LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}")
# Get and remove the first frame from imgs buffer
if self.buffer:
images.append(x.pop(0))
# Get the last frame, and clear the rest from the imgs buffer
else:
images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
x.clear()
return self.sources, images, [""] * self.bs
def __len__(self):
"""Return the number of video streams in the LoadStreams object."""
return self.bs # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
"""
Ultralytics screenshot dataloader for capturing and processing screen images.
This class manages the loading of screenshot images for processing with YOLO. It is suitable for use with
`yolo predict source=screen`.
Attributes:
source (str): The source input indicating which screen to capture.
screen (int): The screen number to capture.
left (int): The left coordinate for screen capture area.
top (int): The top coordinate for screen capture area.
width (int): The width of the screen capture area.
height (int): The height of the screen capture area.
mode (str): Set to 'stream' indicating real-time capture.
frame (int): Counter for captured frames.
sct (mss.mss): Screen capture object from `mss` library.
bs (int): Batch size, set to 1.
fps (int): Frames per second, set to 30.
monitor (Dict[str, int]): Monitor configuration details.
Methods:
__iter__: Returns an iterator object.
__next__: Captures the next screenshot and returns it.
Examples:
>>> loader = LoadScreenshots("0 100 100 640 480") # screen 0, top-left (100,100), 640x480
>>> for source, im, im0s, vid_cap, s in loader:
... print(f"Captured frame: {im.shape}")
"""
def __init__(self, source):
"""Initialize screenshot capture with specified screen and region parameters."""
check_requirements("mss")
import mss # noqa
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.mode = "stream"
self.frame = 0
self.sct = mss.mss()
self.bs = 1
self.fps = 30
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor["top"] if top is None else (monitor["top"] + top)
self.left = monitor["left"] if left is None else (monitor["left"] + left)
self.width = width or monitor["width"]
self.height = height or monitor["height"]
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
def __iter__(self):
"""Yields the next screenshot image from the specified screen or region for processing."""
return self
def __next__(self):
"""Captures and returns the next screenshot as a numpy array using the mss library."""
im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
self.frame += 1
return [str(self.screen)], [im0], [s] # screen, img, string
class LoadImagesAndVideos:
"""
A class for loading and processing images and videos for YOLO object detection.
This class manages the loading and pre-processing of image and video data from various sources, including
single image files, video files, and lists of image and video paths.
Attributes:
files (List[str]): List of image and video file paths.
nf (int): Total number of files (images and videos).
video_flag (List[bool]): Flags indicating whether a file is a video (True) or an image (False).
mode (str): Current mode, 'image' or 'video'.
vid_stride (int): Stride for video frame-rate.
bs (int): Batch size.
cap (cv2.VideoCapture): Video capture object for OpenCV.
frame (int): Frame counter for video.
frames (int): Total number of frames in the video.
count (int): Counter for iteration, initialized at 0 during __iter__().
ni (int): Number of images.
Methods:
__init__: Initialize the LoadImagesAndVideos object.
__iter__: Returns an iterator object for VideoStream or ImageFolder.
__next__: Returns the next batch of images or video frames along with their paths and metadata.
_new_video: Creates a new video capture object for the given path.
__len__: Returns the number of batches in the object.
Examples:
>>> loader = LoadImagesAndVideos("path/to/data", batch=32, vid_stride=1)
>>> for paths, imgs, info in loader:
... # Process batch of images or video frames
... pass
Notes:
- Supports various image formats including HEIC.
- Handles both local files and directories.
- Can read from a text file containing paths to images and videos.
"""
def __init__(self, path, batch=1, vid_stride=1):
"""Initialize dataloader for images and videos, supporting various input formats."""
parent = None
if isinstance(path, str) and Path(path).suffix == ".txt": # *.txt file with img/vid/dir on each line
parent = Path(path).parent
path = Path(path).read_text().splitlines() # list of sources
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
if "*" in a:
files.extend(sorted(glob.glob(a, recursive=True))) # glob
elif os.path.isdir(a):
files.extend(sorted(glob.glob(os.path.join(a, "*.*")))) # dir
elif os.path.isfile(a):
files.append(a) # files (absolute or relative to CWD)
elif parent and (parent / p).is_file():
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent)
else:
raise FileNotFoundError(f"{p} does not exist")
# Define files as images or videos
images, videos = [], []
for f in files:
suffix = f.split(".")[-1].lower() # Get file extension without the dot and lowercase
if suffix in IMG_FORMATS:
images.append(f)
elif suffix in VID_FORMATS:
videos.append(f)
ni, nv = len(images), len(videos)
self.files = images + videos
self.nf = ni + nv # number of files
self.ni = ni # number of images
self.video_flag = [False] * ni + [True] * nv
self.mode = "image"
self.vid_stride = vid_stride # video frame-rate stride
self.bs = batch
if any(videos):
self._new_video(videos[0]) # new video
else:
self.cap = None
if self.nf == 0:
raise FileNotFoundError(f"No images or videos found in {p}. {FORMATS_HELP_MSG}")
def __iter__(self):
"""Iterates through image/video files, yielding source paths, images, and metadata."""
self.count = 0
return self
def __next__(self):
"""Returns the next batch of images or video frames with their paths and metadata."""
paths, imgs, info = [], [], []
while len(imgs) < self.bs:
if self.count >= self.nf: # end of file list
if imgs:
return paths, imgs, info # return last partial batch
else:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
self.mode = "video"
if not self.cap or not self.cap.isOpened():
self._new_video(path)
success = False
for _ in range(self.vid_stride):
success = self.cap.grab()
if not success:
break # end of video or failure
if success:
success, im0 = self.cap.retrieve()
if success:
self.frame += 1
paths.append(path)
imgs.append(im0)
info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
if self.frame == self.frames: # end of video
self.count += 1
self.cap.release()
else:
# Move to the next file if the current video ended or failed to open
self.count += 1
if self.cap:
self.cap.release()
if self.count < self.nf:
self._new_video(self.files[self.count])
else:
# Handle image files (including HEIC)
self.mode = "image"
if path.split(".")[-1].lower() == "heic":
# Load HEIC image using Pillow with pillow-heif
check_requirements("pillow-heif")
from pillow_heif import register_heif_opener
register_heif_opener() # Register HEIF opener with Pillow
with Image.open(path) as img:
im0 = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) # convert image to BGR nparray
else:
im0 = imread(path) # BGR
if im0 is None:
LOGGER.warning(f"WARNING ⚠️ Image Read Error {path}")
else:
paths.append(path)
imgs.append(im0)
info.append(f"image {self.count + 1}/{self.nf} {path}: ")
self.count += 1 # move to the next file
if self.count >= self.ni: # end of image list
break
return paths, imgs, info
def _new_video(self, path):
"""Creates a new video capture object for the given path and initializes video-related attributes."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
if not self.cap.isOpened():
raise FileNotFoundError(f"Failed to open video {path}")
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def __len__(self):
"""Returns the number of files (images and videos) in the dataset."""
return math.ceil(self.nf / self.bs) # number of batches
class LoadPilAndNumpy:
"""
Load images from PIL and Numpy arrays for batch processing.
This class manages loading and pre-processing of image data from both PIL and Numpy formats. It performs basic
validation and format conversion to ensure that the images are in the required format for downstream processing.
Attributes:
paths (List[str]): List of image paths or autogenerated filenames.
im0 (List[np.ndarray]): List of images stored as Numpy arrays.
mode (str): Type of data being processed, set to 'image'.
bs (int): Batch size, equivalent to the length of `im0`.
Methods:
_single_check: Validate and format a single image to a Numpy array.
Examples:
>>> from PIL import Image
>>> import numpy as np
>>> pil_img = Image.new("RGB", (100, 100))
>>> np_img = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> loader = LoadPilAndNumpy([pil_img, np_img])
>>> paths, images, _ = next(iter(loader))
>>> print(f"Loaded {len(images)} images")
Loaded 2 images
"""
def __init__(self, im0):
"""Initializes a loader for PIL and Numpy images, converting inputs to a standardized format."""
if not isinstance(im0, list):
im0 = [im0]
# use `image{i}.jpg` when Image.filename returns an empty path.
self.paths = [getattr(im, "filename", "") or f"image{i}.jpg" for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.mode = "image"
self.bs = len(self.im0)
@staticmethod
def _single_check(im):
"""Validate and format an image to numpy array, ensuring RGB order and contiguous memory."""
assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
if isinstance(im, Image.Image):
if im.mode != "RGB":
im = im.convert("RGB")
im = np.asarray(im)[:, :, ::-1]
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
"""Returns the length of the 'im0' attribute, representing the number of loaded images."""
return len(self.im0)
def __next__(self):
"""Returns the next batch of images, paths, and metadata for processing."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, [""] * self.bs
def __iter__(self):
"""Iterates through PIL/numpy images, yielding paths, raw images, and metadata for processing."""
self.count = 0
return self
class LoadTensor:
"""
A class for loading and processing tensor data for object detection tasks.
This class handles the loading and pre-processing of image data from PyTorch tensors, preparing them for
further processing in object detection pipelines.
Attributes:
im0 (torch.Tensor): The input tensor containing the image(s) with shape (B, C, H, W).
bs (int): Batch size, inferred from the shape of `im0`.
mode (str): Current processing mode, set to 'image'.
paths (List[str]): List of image paths or auto-generated filenames.
Methods:
_single_check: Validates and formats an input tensor.
Examples:
>>> import torch
>>> tensor = torch.rand(1, 3, 640, 640)
>>> loader = LoadTensor(tensor)
>>> paths, images, info = next(iter(loader))
>>> print(f"Processed {len(images)} images")
"""
def __init__(self, im0) -> None:
"""Initialize LoadTensor object for processing torch.Tensor image data."""
self.im0 = self._single_check(im0)
self.bs = self.im0.shape[0]
self.mode = "image"
self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
@staticmethod
def _single_check(im, stride=32):
"""Validates and formats a single image tensor, ensuring correct shape and normalization."""
s = (
f"WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) "
f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible."
)
if len(im.shape) != 4:
if len(im.shape) != 3:
raise ValueError(s)
LOGGER.warning(s)
im = im.unsqueeze(0)
if im.shape[2] % stride or im.shape[3] % stride:
raise ValueError(s)
if im.max() > 1.0 + torch.finfo(im.dtype).eps: # torch.float32 eps is 1.2e-07
LOGGER.warning(
f"WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. "
f"Dividing input by 255."
)
im = im.float() / 255.0
return im
def __iter__(self):
"""Yields an iterator object for iterating through tensor image data."""
self.count = 0
return self
def __next__(self):
"""Yields the next batch of tensor images and metadata for processing."""
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, [""] * self.bs
def __len__(self):
"""Returns the batch size of the tensor input."""
return self.bs
def autocast_list(source):
"""Merges a list of sources into a list of numpy arrays or PIL images for Ultralytics prediction."""
files = []
for im in source:
if isinstance(im, (str, Path)): # filename or uri
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im))
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
files.append(im)
else:
raise TypeError(
f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n"
f"See https://docs.ultralytics.com/modes/predict for supported source types."
)
return files
def get_best_youtube_url(url, method="pytube"):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
Args:
url (str): The URL of the YouTube video.
method (str): The method to use for extracting video info. Options are "pytube", "pafy", and "yt-dlp".
Defaults to "pytube".
Returns:
(str | None): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
Examples:
>>> url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
>>> best_url = get_best_youtube_url(url)
>>> print(best_url)
https://rr4---sn-q4flrnek.googlevideo.com/videoplayback?expire=...
Notes:
- Requires additional libraries based on the chosen method: pytubefix, pafy, or yt-dlp.
- The function prioritizes streams with at least 1080p resolution when available.
- For the "yt-dlp" method, it looks for formats with video codec, no audio, and *.mp4 extension.
"""
if method == "pytube":
# Switched from pytube to pytubefix to resolve https://github.com/pytube/pytube/issues/1954
check_requirements("pytubefix>=6.5.2")
from pytubefix import YouTube
streams = YouTube(url).streams.filter(file_extension="mp4", only_video=True)
streams = sorted(streams, key=lambda s: s.resolution, reverse=True) # sort streams by resolution
for stream in streams:
if stream.resolution and int(stream.resolution[:-1]) >= 1080: # check if resolution is at least 1080p
return stream.url
elif method == "pafy":
check_requirements(("pafy", "youtube_dl==2020.12.2"))
import pafy # noqa
return pafy.new(url).getbestvideo(preftype="mp4").url
elif method == "yt-dlp":
check_requirements("yt-dlp")
import yt_dlp
with yt_dlp.YoutubeDL({"quiet": True}) as ydl:
info_dict = ydl.extract_info(url, download=False) # extract info
for f in reversed(info_dict.get("formats", [])): # reversed because best is usually last
# Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
return f.get("url")
# Define constants
LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots)