File size: 29,107 Bytes
f6228f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# Ultralytics YOLO 🚀, AGPL-3.0 license

import glob
import math
import os
import time
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse

import cv2
import numpy as np
import requests
import torch
from PIL import Image

from ultralytics.data.utils import FORMATS_HELP_MSG, IMG_FORMATS, VID_FORMATS
from ultralytics.utils import IS_COLAB, IS_KAGGLE, LOGGER, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.patches import imread


@dataclass
class SourceTypes:
    """

    Class to represent various types of input sources for predictions.



    This class uses dataclass to define boolean flags for different types of input sources that can be used for

    making predictions with YOLO models.



    Attributes:

        stream (bool): Flag indicating if the input source is a video stream.

        screenshot (bool): Flag indicating if the input source is a screenshot.

        from_img (bool): Flag indicating if the input source is an image file.



    Examples:

        >>> source_types = SourceTypes(stream=True, screenshot=False, from_img=False)

        >>> print(source_types.stream)

        True

        >>> print(source_types.from_img)

        False

    """

    stream: bool = False
    screenshot: bool = False
    from_img: bool = False
    tensor: bool = False


class LoadStreams:
    """

    Stream Loader for various types of video streams.



    Supports RTSP, RTMP, HTTP, and TCP streams. This class handles the loading and processing of multiple video

    streams simultaneously, making it suitable for real-time video analysis tasks.



    Attributes:

        sources (List[str]): The source input paths or URLs for the video streams.

        vid_stride (int): Video frame-rate stride.

        buffer (bool): Whether to buffer input streams.

        running (bool): Flag to indicate if the streaming thread is running.

        mode (str): Set to 'stream' indicating real-time capture.

        imgs (List[List[np.ndarray]]): List of image frames for each stream.

        fps (List[float]): List of FPS for each stream.

        frames (List[int]): List of total frames for each stream.

        threads (List[Thread]): List of threads for each stream.

        shape (List[Tuple[int, int, int]]): List of shapes for each stream.

        caps (List[cv2.VideoCapture]): List of cv2.VideoCapture objects for each stream.

        bs (int): Batch size for processing.



    Methods:

        update: Read stream frames in daemon thread.

        close: Close stream loader and release resources.

        __iter__: Returns an iterator object for the class.

        __next__: Returns source paths, transformed, and original images for processing.

        __len__: Return the length of the sources object.



    Examples:

        >>> stream_loader = LoadStreams("rtsp://example.com/stream1.mp4")

        >>> for sources, imgs, _ in stream_loader:

        ...     # Process the images

        ...     pass

        >>> stream_loader.close()



    Notes:

        - The class uses threading to efficiently load frames from multiple streams simultaneously.

        - It automatically handles YouTube links, converting them to the best available stream URL.

        - The class implements a buffer system to manage frame storage and retrieval.

    """

    def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
        """Initialize stream loader for multiple video sources, supporting various stream types."""
        torch.backends.cudnn.benchmark = True  # faster for fixed-size inference
        self.buffer = buffer  # buffer input streams
        self.running = True  # running flag for Thread
        self.mode = "stream"
        self.vid_stride = vid_stride  # video frame-rate stride

        sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
        n = len(sources)
        self.bs = n
        self.fps = [0] * n  # frames per second
        self.frames = [0] * n
        self.threads = [None] * n
        self.caps = [None] * n  # video capture objects
        self.imgs = [[] for _ in range(n)]  # images
        self.shape = [[] for _ in range(n)]  # image shapes
        self.sources = [ops.clean_str(x) for x in sources]  # clean source names for later
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
            st = f"{i + 1}/{n}: {s}... "
            if urlparse(s).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}:  # if source is YouTube video
                # YouTube format i.e. 'https://www.youtube.com/watch?v=Jsn8D3aC840' or 'https://youtu.be/Jsn8D3aC840'
                s = get_best_youtube_url(s)
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            if s == 0 and (IS_COLAB or IS_KAGGLE):
                raise NotImplementedError(
                    "'source=0' webcam not supported in Colab and Kaggle notebooks. "
                    "Try running 'source=0' in a local environment."
                )
            self.caps[i] = cv2.VideoCapture(s)  # store video capture object
            if not self.caps[i].isOpened():
                raise ConnectionError(f"{st}Failed to open {s}")
            w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = self.caps[i].get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
            self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
                "inf"
            )  # infinite stream fallback
            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback

            success, im = self.caps[i].read()  # guarantee first frame
            if not success or im is None:
                raise ConnectionError(f"{st}Failed to read images from {s}")
            self.imgs[i].append(im)
            self.shape[i] = im.shape
            self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
            LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
            self.threads[i].start()
        LOGGER.info("")  # newline

    def update(self, i, cap, stream):
        """Read stream frames in daemon thread and update image buffer."""
        n, f = 0, self.frames[i]  # frame number, frame array
        while self.running and cap.isOpened() and n < (f - 1):
            if len(self.imgs[i]) < 30:  # keep a <=30-image buffer
                n += 1
                cap.grab()  # .read() = .grab() followed by .retrieve()
                if n % self.vid_stride == 0:
                    success, im = cap.retrieve()
                    if not success:
                        im = np.zeros(self.shape[i], dtype=np.uint8)
                        LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.")
                        cap.open(stream)  # re-open stream if signal was lost
                    if self.buffer:
                        self.imgs[i].append(im)
                    else:
                        self.imgs[i] = [im]
            else:
                time.sleep(0.01)  # wait until the buffer is empty

    def close(self):
        """Terminates stream loader, stops threads, and releases video capture resources."""
        self.running = False  # stop flag for Thread
        for thread in self.threads:
            if thread.is_alive():
                thread.join(timeout=5)  # Add timeout
        for cap in self.caps:  # Iterate through the stored VideoCapture objects
            try:
                cap.release()  # release video capture
            except Exception as e:
                LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}")
        cv2.destroyAllWindows()

    def __iter__(self):
        """Iterates through YOLO image feed and re-opens unresponsive streams."""
        self.count = -1
        return self

    def __next__(self):
        """Returns the next batch of frames from multiple video streams for processing."""
        self.count += 1

        images = []
        for i, x in enumerate(self.imgs):
            # Wait until a frame is available in each buffer
            while not x:
                if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"):  # q to quit
                    self.close()
                    raise StopIteration
                time.sleep(1 / min(self.fps))
                x = self.imgs[i]
                if not x:
                    LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}")

            # Get and remove the first frame from imgs buffer
            if self.buffer:
                images.append(x.pop(0))

            # Get the last frame, and clear the rest from the imgs buffer
            else:
                images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
                x.clear()

        return self.sources, images, [""] * self.bs

    def __len__(self):
        """Return the number of video streams in the LoadStreams object."""
        return self.bs  # 1E12 frames = 32 streams at 30 FPS for 30 years


class LoadScreenshots:
    """

    Ultralytics screenshot dataloader for capturing and processing screen images.



    This class manages the loading of screenshot images for processing with YOLO. It is suitable for use with

    `yolo predict source=screen`.



    Attributes:

        source (str): The source input indicating which screen to capture.

        screen (int): The screen number to capture.

        left (int): The left coordinate for screen capture area.

        top (int): The top coordinate for screen capture area.

        width (int): The width of the screen capture area.

        height (int): The height of the screen capture area.

        mode (str): Set to 'stream' indicating real-time capture.

        frame (int): Counter for captured frames.

        sct (mss.mss): Screen capture object from `mss` library.

        bs (int): Batch size, set to 1.

        fps (int): Frames per second, set to 30.

        monitor (Dict[str, int]): Monitor configuration details.



    Methods:

        __iter__: Returns an iterator object.

        __next__: Captures the next screenshot and returns it.



    Examples:

        >>> loader = LoadScreenshots("0 100 100 640 480")  # screen 0, top-left (100,100), 640x480

        >>> for source, im, im0s, vid_cap, s in loader:

        ...     print(f"Captured frame: {im.shape}")

    """

    def __init__(self, source):
        """Initialize screenshot capture with specified screen and region parameters."""
        check_requirements("mss")
        import mss  # noqa

        source, *params = source.split()
        self.screen, left, top, width, height = 0, None, None, None, None  # default to full screen 0
        if len(params) == 1:
            self.screen = int(params[0])
        elif len(params) == 4:
            left, top, width, height = (int(x) for x in params)
        elif len(params) == 5:
            self.screen, left, top, width, height = (int(x) for x in params)
        self.mode = "stream"
        self.frame = 0
        self.sct = mss.mss()
        self.bs = 1
        self.fps = 30

        # Parse monitor shape
        monitor = self.sct.monitors[self.screen]
        self.top = monitor["top"] if top is None else (monitor["top"] + top)
        self.left = monitor["left"] if left is None else (monitor["left"] + left)
        self.width = width or monitor["width"]
        self.height = height or monitor["height"]
        self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}

    def __iter__(self):
        """Yields the next screenshot image from the specified screen or region for processing."""
        return self

    def __next__(self):
        """Captures and returns the next screenshot as a numpy array using the mss library."""
        im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3]  # BGRA to BGR
        s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "

        self.frame += 1
        return [str(self.screen)], [im0], [s]  # screen, img, string


class LoadImagesAndVideos:
    """

    A class for loading and processing images and videos for YOLO object detection.



    This class manages the loading and pre-processing of image and video data from various sources, including

    single image files, video files, and lists of image and video paths.



    Attributes:

        files (List[str]): List of image and video file paths.

        nf (int): Total number of files (images and videos).

        video_flag (List[bool]): Flags indicating whether a file is a video (True) or an image (False).

        mode (str): Current mode, 'image' or 'video'.

        vid_stride (int): Stride for video frame-rate.

        bs (int): Batch size.

        cap (cv2.VideoCapture): Video capture object for OpenCV.

        frame (int): Frame counter for video.

        frames (int): Total number of frames in the video.

        count (int): Counter for iteration, initialized at 0 during __iter__().

        ni (int): Number of images.



    Methods:

        __init__: Initialize the LoadImagesAndVideos object.

        __iter__: Returns an iterator object for VideoStream or ImageFolder.

        __next__: Returns the next batch of images or video frames along with their paths and metadata.

        _new_video: Creates a new video capture object for the given path.

        __len__: Returns the number of batches in the object.



    Examples:

        >>> loader = LoadImagesAndVideos("path/to/data", batch=32, vid_stride=1)

        >>> for paths, imgs, info in loader:

        ...     # Process batch of images or video frames

        ...     pass



    Notes:

        - Supports various image formats including HEIC.

        - Handles both local files and directories.

        - Can read from a text file containing paths to images and videos.

    """

    def __init__(self, path, batch=1, vid_stride=1):
        """Initialize dataloader for images and videos, supporting various input formats."""
        parent = None
        if isinstance(path, str) and Path(path).suffix == ".txt":  # *.txt file with img/vid/dir on each line
            parent = Path(path).parent
            path = Path(path).read_text().splitlines()  # list of sources
        files = []
        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
            a = str(Path(p).absolute())  # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
            if "*" in a:
                files.extend(sorted(glob.glob(a, recursive=True)))  # glob
            elif os.path.isdir(a):
                files.extend(sorted(glob.glob(os.path.join(a, "*.*"))))  # dir
            elif os.path.isfile(a):
                files.append(a)  # files (absolute or relative to CWD)
            elif parent and (parent / p).is_file():
                files.append(str((parent / p).absolute()))  # files (relative to *.txt file parent)
            else:
                raise FileNotFoundError(f"{p} does not exist")

        # Define files as images or videos
        images, videos = [], []
        for f in files:
            suffix = f.split(".")[-1].lower()  # Get file extension without the dot and lowercase
            if suffix in IMG_FORMATS:
                images.append(f)
            elif suffix in VID_FORMATS:
                videos.append(f)
        ni, nv = len(images), len(videos)

        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.ni = ni  # number of images
        self.video_flag = [False] * ni + [True] * nv
        self.mode = "image"
        self.vid_stride = vid_stride  # video frame-rate stride
        self.bs = batch
        if any(videos):
            self._new_video(videos[0])  # new video
        else:
            self.cap = None
        if self.nf == 0:
            raise FileNotFoundError(f"No images or videos found in {p}. {FORMATS_HELP_MSG}")

    def __iter__(self):
        """Iterates through image/video files, yielding source paths, images, and metadata."""
        self.count = 0
        return self

    def __next__(self):
        """Returns the next batch of images or video frames with their paths and metadata."""
        paths, imgs, info = [], [], []
        while len(imgs) < self.bs:
            if self.count >= self.nf:  # end of file list
                if imgs:
                    return paths, imgs, info  # return last partial batch
                else:
                    raise StopIteration

            path = self.files[self.count]
            if self.video_flag[self.count]:
                self.mode = "video"
                if not self.cap or not self.cap.isOpened():
                    self._new_video(path)

                success = False
                for _ in range(self.vid_stride):
                    success = self.cap.grab()
                    if not success:
                        break  # end of video or failure

                if success:
                    success, im0 = self.cap.retrieve()
                    if success:
                        self.frame += 1
                        paths.append(path)
                        imgs.append(im0)
                        info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
                        if self.frame == self.frames:  # end of video
                            self.count += 1
                            self.cap.release()
                else:
                    # Move to the next file if the current video ended or failed to open
                    self.count += 1
                    if self.cap:
                        self.cap.release()
                    if self.count < self.nf:
                        self._new_video(self.files[self.count])
            else:
                # Handle image files (including HEIC)
                self.mode = "image"
                if path.split(".")[-1].lower() == "heic":
                    # Load HEIC image using Pillow with pillow-heif
                    check_requirements("pillow-heif")

                    from pillow_heif import register_heif_opener

                    register_heif_opener()  # Register HEIF opener with Pillow
                    with Image.open(path) as img:
                        im0 = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)  # convert image to BGR nparray
                else:
                    im0 = imread(path)  # BGR
                if im0 is None:
                    LOGGER.warning(f"WARNING ⚠️ Image Read Error {path}")
                else:
                    paths.append(path)
                    imgs.append(im0)
                    info.append(f"image {self.count + 1}/{self.nf} {path}: ")
                self.count += 1  # move to the next file
                if self.count >= self.ni:  # end of image list
                    break

        return paths, imgs, info

    def _new_video(self, path):
        """Creates a new video capture object for the given path and initializes video-related attributes."""
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
        if not self.cap.isOpened():
            raise FileNotFoundError(f"Failed to open video {path}")
        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)

    def __len__(self):
        """Returns the number of files (images and videos) in the dataset."""
        return math.ceil(self.nf / self.bs)  # number of batches


class LoadPilAndNumpy:
    """

    Load images from PIL and Numpy arrays for batch processing.



    This class manages loading and pre-processing of image data from both PIL and Numpy formats. It performs basic

    validation and format conversion to ensure that the images are in the required format for downstream processing.



    Attributes:

        paths (List[str]): List of image paths or autogenerated filenames.

        im0 (List[np.ndarray]): List of images stored as Numpy arrays.

        mode (str): Type of data being processed, set to 'image'.

        bs (int): Batch size, equivalent to the length of `im0`.



    Methods:

        _single_check: Validate and format a single image to a Numpy array.



    Examples:

        >>> from PIL import Image

        >>> import numpy as np

        >>> pil_img = Image.new("RGB", (100, 100))

        >>> np_img = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)

        >>> loader = LoadPilAndNumpy([pil_img, np_img])

        >>> paths, images, _ = next(iter(loader))

        >>> print(f"Loaded {len(images)} images")

        Loaded 2 images

    """

    def __init__(self, im0):
        """Initializes a loader for PIL and Numpy images, converting inputs to a standardized format."""
        if not isinstance(im0, list):
            im0 = [im0]
        # use `image{i}.jpg` when Image.filename returns an empty path.
        self.paths = [getattr(im, "filename", "") or f"image{i}.jpg" for i, im in enumerate(im0)]
        self.im0 = [self._single_check(im) for im in im0]
        self.mode = "image"
        self.bs = len(self.im0)

    @staticmethod
    def _single_check(im):
        """Validate and format an image to numpy array, ensuring RGB order and contiguous memory."""
        assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
        if isinstance(im, Image.Image):
            if im.mode != "RGB":
                im = im.convert("RGB")
            im = np.asarray(im)[:, :, ::-1]
            im = np.ascontiguousarray(im)  # contiguous
        return im

    def __len__(self):
        """Returns the length of the 'im0' attribute, representing the number of loaded images."""
        return len(self.im0)

    def __next__(self):
        """Returns the next batch of images, paths, and metadata for processing."""
        if self.count == 1:  # loop only once as it's batch inference
            raise StopIteration
        self.count += 1
        return self.paths, self.im0, [""] * self.bs

    def __iter__(self):
        """Iterates through PIL/numpy images, yielding paths, raw images, and metadata for processing."""
        self.count = 0
        return self


class LoadTensor:
    """

    A class for loading and processing tensor data for object detection tasks.



    This class handles the loading and pre-processing of image data from PyTorch tensors, preparing them for

    further processing in object detection pipelines.



    Attributes:

        im0 (torch.Tensor): The input tensor containing the image(s) with shape (B, C, H, W).

        bs (int): Batch size, inferred from the shape of `im0`.

        mode (str): Current processing mode, set to 'image'.

        paths (List[str]): List of image paths or auto-generated filenames.



    Methods:

        _single_check: Validates and formats an input tensor.



    Examples:

        >>> import torch

        >>> tensor = torch.rand(1, 3, 640, 640)

        >>> loader = LoadTensor(tensor)

        >>> paths, images, info = next(iter(loader))

        >>> print(f"Processed {len(images)} images")

    """

    def __init__(self, im0) -> None:
        """Initialize LoadTensor object for processing torch.Tensor image data."""
        self.im0 = self._single_check(im0)
        self.bs = self.im0.shape[0]
        self.mode = "image"
        self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]

    @staticmethod
    def _single_check(im, stride=32):
        """Validates and formats a single image tensor, ensuring correct shape and normalization."""
        s = (
            f"WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) "
            f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible."
        )
        if len(im.shape) != 4:
            if len(im.shape) != 3:
                raise ValueError(s)
            LOGGER.warning(s)
            im = im.unsqueeze(0)
        if im.shape[2] % stride or im.shape[3] % stride:
            raise ValueError(s)
        if im.max() > 1.0 + torch.finfo(im.dtype).eps:  # torch.float32 eps is 1.2e-07
            LOGGER.warning(
                f"WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. "
                f"Dividing input by 255."
            )
            im = im.float() / 255.0

        return im

    def __iter__(self):
        """Yields an iterator object for iterating through tensor image data."""
        self.count = 0
        return self

    def __next__(self):
        """Yields the next batch of tensor images and metadata for processing."""
        if self.count == 1:
            raise StopIteration
        self.count += 1
        return self.paths, self.im0, [""] * self.bs

    def __len__(self):
        """Returns the batch size of the tensor input."""
        return self.bs


def autocast_list(source):
    """Merges a list of sources into a list of numpy arrays or PIL images for Ultralytics prediction."""
    files = []
    for im in source:
        if isinstance(im, (str, Path)):  # filename or uri
            files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im))
        elif isinstance(im, (Image.Image, np.ndarray)):  # PIL or np Image
            files.append(im)
        else:
            raise TypeError(
                f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n"
                f"See https://docs.ultralytics.com/modes/predict for supported source types."
            )

    return files


def get_best_youtube_url(url, method="pytube"):
    """

    Retrieves the URL of the best quality MP4 video stream from a given YouTube video.



    Args:

        url (str): The URL of the YouTube video.

        method (str): The method to use for extracting video info. Options are "pytube", "pafy", and "yt-dlp".

            Defaults to "pytube".



    Returns:

        (str | None): The URL of the best quality MP4 video stream, or None if no suitable stream is found.



    Examples:

        >>> url = "https://www.youtube.com/watch?v=dQw4w9WgXcQ"

        >>> best_url = get_best_youtube_url(url)

        >>> print(best_url)

        https://rr4---sn-q4flrnek.googlevideo.com/videoplayback?expire=...



    Notes:

        - Requires additional libraries based on the chosen method: pytubefix, pafy, or yt-dlp.

        - The function prioritizes streams with at least 1080p resolution when available.

        - For the "yt-dlp" method, it looks for formats with video codec, no audio, and *.mp4 extension.

    """
    if method == "pytube":
        # Switched from pytube to pytubefix to resolve https://github.com/pytube/pytube/issues/1954
        check_requirements("pytubefix>=6.5.2")
        from pytubefix import YouTube

        streams = YouTube(url).streams.filter(file_extension="mp4", only_video=True)
        streams = sorted(streams, key=lambda s: s.resolution, reverse=True)  # sort streams by resolution
        for stream in streams:
            if stream.resolution and int(stream.resolution[:-1]) >= 1080:  # check if resolution is at least 1080p
                return stream.url

    elif method == "pafy":
        check_requirements(("pafy", "youtube_dl==2020.12.2"))
        import pafy  # noqa

        return pafy.new(url).getbestvideo(preftype="mp4").url

    elif method == "yt-dlp":
        check_requirements("yt-dlp")
        import yt_dlp

        with yt_dlp.YoutubeDL({"quiet": True}) as ydl:
            info_dict = ydl.extract_info(url, download=False)  # extract info
        for f in reversed(info_dict.get("formats", [])):  # reversed because best is usually last
            # Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
            good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
            if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
                return f.get("url")


# Define constants
LOADERS = (LoadStreams, LoadPilAndNumpy, LoadImagesAndVideos, LoadScreenshots)