|
---
|
|
comments: true
|
|
description: Explore the YOLO11 command line interface (CLI) for easy execution of detection tasks without needing a Python environment.
|
|
keywords: YOLO11 CLI, command line interface, YOLO11 commands, detection tasks, Ultralytics, model training, model prediction
|
|
---
|
|
|
|
# Command Line Interface Usage
|
|
|
|
The YOLO command line interface (CLI) allows for simple single-line commands without the need for a Python environment. CLI requires no customization or Python code. You can simply run all tasks from the terminal with the `yolo` command.
|
|
|
|
<p align="center">
|
|
<br>
|
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=19"
|
|
title="YouTube video player" frameborder="0"
|
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
|
allowfullscreen>
|
|
</iframe>
|
|
<br>
|
|
<strong>Watch:</strong> Mastering Ultralytics YOLO: CLI
|
|
</p>
|
|
|
|
!!! example
|
|
|
|
=== "Syntax"
|
|
|
|
Ultralytics `yolo` commands use the following syntax:
|
|
```bash
|
|
yolo TASK MODE ARGS
|
|
|
|
Where TASK (optional) is one of [detect, segment, classify, pose, obb]
|
|
MODE (required) is one of [train, val, predict, export, track, benchmark]
|
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
|
```
|
|
See all ARGS in the full [Configuration Guide](cfg.md) or with `yolo cfg`
|
|
|
|
=== "Train"
|
|
|
|
Train a detection model for 10 [epochs](https://www.ultralytics.com/glossary/epoch) with an initial learning_rate of 0.01
|
|
```bash
|
|
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
|
```
|
|
|
|
=== "Predict"
|
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
```bash
|
|
yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
|
```
|
|
|
|
=== "Val"
|
|
|
|
Val a pretrained detection model at batch-size 1 and image size 640:
|
|
```bash
|
|
yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
|
```
|
|
|
|
=== "Export"
|
|
|
|
Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
|
```bash
|
|
yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
|
|
```
|
|
|
|
=== "Special"
|
|
|
|
Run special commands to see version, view settings, run checks and more:
|
|
```bash
|
|
yolo help
|
|
yolo checks
|
|
yolo version
|
|
yolo settings
|
|
yolo copy-cfg
|
|
yolo cfg
|
|
```
|
|
|
|
Where:
|
|
|
|
- `TASK` (optional) is one of `[detect, segment, classify, pose, obb]`. If it is not passed explicitly YOLO11 will try to guess the `TASK` from the model type.
|
|
- `MODE` (required) is one of `[train, val, predict, export, track, benchmark]`
|
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults. For a full list of available `ARGS` see the [Configuration](cfg.md) page and `defaults.yaml`
|
|
|
|
!!! warning
|
|
|
|
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
|
|
|
- `yolo predict model=yolo11n.pt imgsz=640 conf=0.25` ✅
|
|
- `yolo predict model yolo11n.pt imgsz 640 conf 0.25` ❌
|
|
- `yolo predict --model yolo11n.pt --imgsz 640 --conf 0.25` ❌
|
|
|
|
## Train
|
|
|
|
Train YOLO11n on the COCO8 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](cfg.md) page.
|
|
|
|
!!! example
|
|
|
|
=== "Train"
|
|
|
|
Start training YOLO11n on COCO8 for 100 epochs at image-size 640.
|
|
```bash
|
|
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640
|
|
```
|
|
|
|
=== "Resume"
|
|
|
|
Resume an interrupted training.
|
|
```bash
|
|
yolo detect train resume model=last.pt
|
|
```
|
|
|
|
## Val
|
|
|
|
Validate trained YOLO11n model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the COCO8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
|
|
|
!!! example
|
|
|
|
=== "Official"
|
|
|
|
Validate an official YOLO11n model.
|
|
```bash
|
|
yolo detect val model=yolo11n.pt
|
|
```
|
|
|
|
=== "Custom"
|
|
|
|
Validate a custom-trained model.
|
|
```bash
|
|
yolo detect val model=path/to/best.pt
|
|
```
|
|
|
|
## Predict
|
|
|
|
Use a trained YOLO11n model to run predictions on images.
|
|
|
|
!!! example
|
|
|
|
=== "Official"
|
|
|
|
Predict with an official YOLO11n model.
|
|
```bash
|
|
yolo detect predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
|
|
```
|
|
|
|
=== "Custom"
|
|
|
|
Predict with a custom model.
|
|
```bash
|
|
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'
|
|
```
|
|
|
|
## Export
|
|
|
|
Export a YOLO11n model to a different format like ONNX, CoreML, etc.
|
|
|
|
!!! example
|
|
|
|
=== "Official"
|
|
|
|
Export an official YOLO11n model to ONNX format.
|
|
```bash
|
|
yolo export model=yolo11n.pt format=onnx
|
|
```
|
|
|
|
=== "Custom"
|
|
|
|
Export a custom-trained model to ONNX format.
|
|
```bash
|
|
yolo export model=path/to/best.pt format=onnx
|
|
```
|
|
|
|
Available YOLO11 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`.
|
|
|
|
{% include "macros/export-table.md" %}
|
|
|
|
See full `export` details in the [Export](../modes/export.md) page.
|
|
|
|
## Overriding default arguments
|
|
|
|
Default arguments can be overridden by simply passing them as arguments in the CLI in `arg=value` pairs.
|
|
|
|
!!! tip
|
|
|
|
=== "Train"
|
|
|
|
Train a detection model for `10 epochs` with `learning_rate` of `0.01`
|
|
```bash
|
|
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
|
```
|
|
|
|
=== "Predict"
|
|
|
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
```bash
|
|
yolo segment predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
|
```
|
|
|
|
=== "Val"
|
|
|
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
|
```bash
|
|
yolo detect val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
|
```
|
|
|
|
## Overriding default config file
|
|
|
|
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments, i.e. `cfg=custom.yaml`.
|
|
|
|
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-cfg` command.
|
|
|
|
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args, like `imgsz=320` in this example:
|
|
|
|
!!! example
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo copy-cfg
|
|
yolo cfg=default_copy.yaml imgsz=320
|
|
```
|
|
|
|
## FAQ
|
|
|
|
### How do I use the Ultralytics YOLO11 command line interface (CLI) for model training?
|
|
|
|
To train a YOLO11 model using the CLI, you can execute a simple one-line command in the terminal. For example, to train a detection model for 10 epochs with a [learning rate](https://www.ultralytics.com/glossary/learning-rate) of 0.01, you would run:
|
|
|
|
```bash
|
|
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
|
```
|
|
|
|
This command uses the `train` mode with specific arguments. Refer to the full list of available arguments in the [Configuration Guide](cfg.md).
|
|
|
|
### What tasks can I perform with the Ultralytics YOLO11 CLI?
|
|
|
|
The Ultralytics YOLO11 CLI supports a variety of tasks including detection, segmentation, classification, validation, prediction, export, and tracking. For instance:
|
|
|
|
- **Train a Model**: Run `yolo train data=<data.yaml> model=<model.pt> epochs=<num>`.
|
|
- **Run Predictions**: Use `yolo predict model=<model.pt> source=<data_source> imgsz=<image_size>`.
|
|
- **Export a Model**: Execute `yolo export model=<model.pt> format=<export_format>`.
|
|
|
|
Each task can be customized with various arguments. For detailed syntax and examples, see the respective sections like [Train](#train), [Predict](#predict), and [Export](#export).
|
|
|
|
### How can I validate the accuracy of a trained YOLO11 model using the CLI?
|
|
|
|
To validate a YOLO11 model's accuracy, use the `val` mode. For example, to validate a pretrained detection model with a [batch size](https://www.ultralytics.com/glossary/batch-size) of 1 and image size of 640, run:
|
|
|
|
```bash
|
|
yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
|
```
|
|
|
|
This command evaluates the model on the specified dataset and provides performance metrics. For more details, refer to the [Val](#val) section.
|
|
|
|
### What formats can I export my YOLO11 models to using the CLI?
|
|
|
|
YOLO11 models can be exported to various formats such as ONNX, CoreML, TensorRT, and more. For instance, to export a model to ONNX format, run:
|
|
|
|
```bash
|
|
yolo export model=yolo11n.pt format=onnx
|
|
```
|
|
|
|
For complete details, visit the [Export](../modes/export.md) page.
|
|
|
|
### How do I customize YOLO11 CLI commands to override default arguments?
|
|
|
|
To override default arguments in YOLO11 CLI commands, pass them as `arg=value` pairs. For example, to train a model with custom arguments, use:
|
|
|
|
```bash
|
|
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
|
```
|
|
|
|
For a full list of available arguments and their descriptions, refer to the [Configuration Guide](cfg.md). Ensure arguments are formatted correctly, as shown in the [Overriding default arguments](#overriding-default-arguments) section.
|
|
|