|
---
|
|
comments: true
|
|
description: Discover how to detect objects with rotation for higher precision using YOLO11 OBB models. Learn, train, validate, and export OBB models effortlessly.
|
|
keywords: Oriented Bounding Boxes, OBB, Object Detection, YOLO11, Ultralytics, DOTAv1, Model Training, Model Export, AI, Machine Learning
|
|
model_name: yolo11n-obb
|
|
---
|
|
|
|
# Oriented Bounding Boxes [Object Detection](https://www.ultralytics.com/glossary/object-detection)
|
|
|
|
<!-- obb task poster -->
|
|
|
|
Oriented object detection goes a step further than object detection and introduce an extra angle to locate objects more accurate in an image.
|
|
|
|
The output of an oriented object detector is a set of rotated bounding boxes that exactly enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
|
|
|
|
<!-- youtube video link for obb task -->
|
|
|
|
!!! tip
|
|
|
|
YOLO11 OBB models use the `-obb` suffix, i.e. `yolo11n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
|
|
|
|
<p align="center">
|
|
<br>
|
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"
|
|
title="YouTube video player" frameborder="0"
|
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
|
allowfullscreen>
|
|
</iframe>
|
|
<br>
|
|
<strong>Watch:</strong> Object Detection using Ultralytics YOLO Oriented Bounding Boxes (YOLO-OBB)
|
|
</p>
|
|
|
|
## Visual Samples
|
|
|
|
| Ships Detection using OBB | Vehicle Detection using OBB |
|
|
| :------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------: |
|
|
| ![Ships Detection using OBB](https://github.com/ultralytics/docs/releases/download/0/ships-detection-using-obb.avif) | ![Vehicle Detection using OBB](https://github.com/ultralytics/docs/releases/download/0/vehicle-detection-using-obb.avif) |
|
|
|
|
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11)
|
|
|
|
YOLO11 pretrained OBB models are shown here, which are pretrained on the [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) dataset.
|
|
|
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
|
|
|
{% include "macros/yolo-obb-perf.md" %}
|
|
|
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
|
|
## Train
|
|
|
|
Train YOLO11n-obb on the DOTA8 dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolo11n-obb.yaml") # build a new model from YAML
|
|
model = YOLO("yolo11n-obb.pt") # load a pretrained model (recommended for training)
|
|
model = YOLO("yolo11n-obb.yaml").load("yolo11n.pt") # build from YAML and transfer weights
|
|
|
|
# Train the model
|
|
results = model.train(data="dota8.yaml", epochs=100, imgsz=640)
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
# Build a new model from YAML and start training from scratch
|
|
yolo obb train data=dota8.yaml model=yolo11n-obb.yaml epochs=100 imgsz=640
|
|
|
|
# Start training from a pretrained *.pt model
|
|
yolo obb train data=dota8.yaml model=yolo11n-obb.pt epochs=100 imgsz=640
|
|
|
|
# Build a new model from YAML, transfer pretrained weights to it and start training
|
|
yolo obb train data=dota8.yaml model=yolo11n-obb.yaml pretrained=yolo11n-obb.pt epochs=100 imgsz=640
|
|
```
|
|
|
|
<p align="center">
|
|
<br>
|
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/uZ7SymQfqKI"
|
|
title="YouTube video player" frameborder="0"
|
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
|
allowfullscreen>
|
|
</iframe>
|
|
<br>
|
|
<strong>Watch:</strong> How to Train Ultralytics YOLO-OBB (Oriented Bounding Boxes) Models on DOTA Dataset using Ultralytics HUB
|
|
</p>
|
|
|
|
### Dataset format
|
|
|
|
OBB dataset format can be found in detail in the [Dataset Guide](../datasets/obb/index.md).
|
|
|
|
## Val
|
|
|
|
Validate trained YOLO11n-obb model [accuracy](https://www.ultralytics.com/glossary/accuracy) on the DOTA8 dataset. No arguments are needed as the `model` retains its training `data` and arguments as model attributes.
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolo11n-obb.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
# Validate the model
|
|
metrics = model.val(data="dota8.yaml") # no arguments needed, dataset and settings remembered
|
|
metrics.box.map # map50-95(B)
|
|
metrics.box.map50 # map50(B)
|
|
metrics.box.map75 # map75(B)
|
|
metrics.box.maps # a list contains map50-95(B) of each category
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo obb val model=yolo11n-obb.pt data=dota8.yaml # val official model
|
|
yolo obb val model=path/to/best.pt data=path/to/data.yaml # val custom model
|
|
```
|
|
|
|
## Predict
|
|
|
|
Use a trained YOLO11n-obb model to run predictions on images.
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolo11n-obb.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom model
|
|
|
|
# Predict with the model
|
|
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo obb predict model=yolo11n-obb.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
|
yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
|
```
|
|
|
|
<p align="center">
|
|
<br>
|
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/5XYdm5CYODA"
|
|
title="YouTube video player" frameborder="0"
|
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
|
allowfullscreen>
|
|
</iframe>
|
|
<br>
|
|
<strong>Watch:</strong> How to Detect and Track Storage Tanks using Ultralytics YOLO-OBB | Oriented Bounding Boxes | DOTA
|
|
</p>
|
|
|
|
See full `predict` mode details in the [Predict](../modes/predict.md) page.
|
|
|
|
## Export
|
|
|
|
Export a YOLO11n-obb model to a different format like ONNX, CoreML, etc.
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolo11n-obb.pt") # load an official model
|
|
model = YOLO("path/to/best.pt") # load a custom trained model
|
|
|
|
# Export the model
|
|
model.export(format="onnx")
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo export model=yolo11n-obb.pt format=onnx # export official model
|
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
|
```
|
|
|
|
Available YOLO11-obb export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolo11n-obb.onnx`. Usage examples are shown for your model after export completes.
|
|
|
|
{% include "macros/export-table.md" %}
|
|
|
|
See full `export` details in the [Export](../modes/export.md) page.
|
|
|
|
## FAQ
|
|
|
|
### What are Oriented Bounding Boxes (OBB) and how do they differ from regular bounding boxes?
|
|
|
|
Oriented Bounding Boxes (OBB) include an additional angle to enhance object localization accuracy in images. Unlike regular bounding boxes, which are axis-aligned rectangles, OBBs can rotate to fit the orientation of the object better. This is particularly useful for applications requiring precise object placement, such as aerial or satellite imagery ([Dataset Guide](../datasets/obb/index.md)).
|
|
|
|
### How do I train a YOLO11n-obb model using a custom dataset?
|
|
|
|
To train a YOLO11n-obb model with a custom dataset, follow the example below using Python or CLI:
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a pretrained model
|
|
model = YOLO("yolo11n-obb.pt")
|
|
|
|
# Train the model
|
|
results = model.train(data="path/to/custom_dataset.yaml", epochs=100, imgsz=640)
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo obb train data=path/to/custom_dataset.yaml model=yolo11n-obb.pt epochs=100 imgsz=640
|
|
```
|
|
|
|
For more training arguments, check the [Configuration](../usage/cfg.md) section.
|
|
|
|
### What datasets can I use for training YOLO11-OBB models?
|
|
|
|
YOLO11-OBB models are pretrained on datasets like [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) but you can use any dataset formatted for OBB. Detailed information on OBB dataset formats can be found in the [Dataset Guide](../datasets/obb/index.md).
|
|
|
|
### How can I export a YOLO11-OBB model to ONNX format?
|
|
|
|
Exporting a YOLO11-OBB model to ONNX format is straightforward using either Python or CLI:
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolo11n-obb.pt")
|
|
|
|
# Export the model
|
|
model.export(format="onnx")
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo export model=yolo11n-obb.pt format=onnx
|
|
```
|
|
|
|
For more export formats and details, refer to the [Export](../modes/export.md) page.
|
|
|
|
### How do I validate the accuracy of a YOLO11n-obb model?
|
|
|
|
To validate a YOLO11n-obb model, you can use Python or CLI commands as shown below:
|
|
|
|
!!! example
|
|
|
|
=== "Python"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
|
|
# Load a model
|
|
model = YOLO("yolo11n-obb.pt")
|
|
|
|
# Validate the model
|
|
metrics = model.val(data="dota8.yaml")
|
|
```
|
|
|
|
=== "CLI"
|
|
|
|
```bash
|
|
yolo obb val model=yolo11n-obb.pt data=dota8.yaml
|
|
```
|
|
|
|
See full validation details in the [Val](../modes/val.md) section.
|
|
|