Data Scripts
preprocess_data.py
Takes a raw dataset, splits it up, tokenizes it, and saves it as numpy files that can be memmapped and used efficiently by the training code.
usage: preprocess_data.py [-h] --input INPUT [--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]] [--num-docs NUM_DOCS]
--tokenizer-type
{HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer,TiktokenTokenizer,SPMTokenizer}
[--vocab-file VOCAB_FILE] [--merge-file MERGE_FILE] [--append-eod] [--ftfy] --output-prefix
OUTPUT_PREFIX [--dataset-impl {lazy,cached,mmap}] [--workers WORKERS]
[--log-interval LOG_INTERVAL]
options:
-h, --help show this help message and exit
input data:
--input INPUT Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma
separated list
--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]
space separate listed of keys to extract from jsonl. Default: text
--num-docs NUM_DOCS Optional: Number of documents in the input data (if known) for an accurate progress bar.
tokenizer:
--tokenizer-type {HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer,TiktokenTokenizer,SPMTokenizer}
What type of tokenizer to use.
--vocab-file VOCAB_FILE
Path to the vocab file
--merge-file MERGE_FILE
Path to the BPE merge file (if necessary).
--append-eod Append an <eod> token to the end of a document.
--ftfy Use ftfy to clean text
output data:
--output-prefix OUTPUT_PREFIX
Path to binary output file without suffix
--dataset-impl {lazy,cached,mmap}
Dataset implementation to use. Default: mmap
runtime:
--workers WORKERS Number of worker processes to launch
--log-interval LOG_INTERVAL
Interval between progress updates
preprocess_data_with_mask.py
Does the same but also creates label
tensors if the dataset has labels.
N.B. If using this, you must specify your data when training/finetuning with the following configs
"train_data_paths": ["train_documents"],
"test_data_paths": ["test_documents"],
"valid_data_paths": ["test_documents"],
"label_data_paths": ["label_documents"]
the "data_path"
option will not work with "label_data_paths"
.
usage: preprocess_data_with_mask.py [-h] --input INPUT [--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]]
[--mask-before-token MASK_BEFORE_TOKEN] [--num-docs NUM_DOCS] --tokenizer-type
{HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer}
[--vocab-file VOCAB_FILE] [--merge-file MERGE_FILE] [--append-eod] [--ftfy]
--output-prefix OUTPUT_PREFIX [--dataset-impl {lazy,cached,mmap}]
[--workers WORKERS] [--log-interval LOG_INTERVAL]
options:
-h, --help show this help message and exit
input data:
--input INPUT Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma
separated list
--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]
space separate listed of keys to extract from jsonl. Defa
--mask-before-token MASK_BEFORE_TOKEN
apply loss masks before certain token(s). If multi-token pattern, separate by commas without
space, e.g. --mask-before-token 0,1,1270 to use the token pattern [0,1,1270].
--num-docs NUM_DOCS Optional: Number of documents in the input data (if known) for an accurate progress bar.
tokenizer:
--tokenizer-type {HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer}
What type of tokenizer to use.
--vocab-file VOCAB_FILE
Path to the vocab file
--merge-file MERGE_FILE
Path to the BPE merge file (if necessary).
--append-eod Append an <eod> token to the end of a document.
--ftfy Use ftfy to clean text
output data:
--output-prefix OUTPUT_PREFIX
Path to binary output file without suffix
--dataset-impl {lazy,cached,mmap}
Dataset implementation to use. Default: mmap
runtime:
--workers WORKERS Number of worker processes to launch
--log-interval LOG_INTERVAL
Interval between progress updates
preprocess_data_with_chat_template.py
Similar, but uses huggingface's chat templates to tokenize the data to support multiturn and more complicated use cases.
N.B. If using this, you must specify your data when training/finetuning with the following configs
"train_data_paths": ["train_documents"],
"test_data_paths": ["test_documents"],
"valid_data_paths": ["test_documents"],
"label_data_paths": ["label_documents"]
the "data_path"
option will not work with "label_data_paths"
.
usage: preprocess_data_with_chat_template.py [-h] --input INPUT [--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]] [--no-mask]
[--generation-role GENERATION_ROLE] [--only-last] [--num-docs NUM_DOCS]
--tokenizer-path TOKENIZER_PATH [--ftfy] --output-prefix OUTPUT_PREFIX
[--dataset-impl {lazy,cached,mmap}] [--workers WORKERS]
[--log-interval LOG_INTERVAL]
options:
-h, --help show this help message and exit
input data:
--input INPUT Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated list
--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]
space separate listed of keys to extract from jsonl. Default: text
--no-mask If set, this will not mask any tokens in the input data.
--generation-role GENERATION_ROLE
The role of the model generating the chat, usually 'assistant'. Default: assistant
--only-last If set, this will mask everything except the last turn in the chat.
--num-docs NUM_DOCS Optional: Number of documents in the input data (if known) for an accurate progress bar.
tokenizer:
--tokenizer-path TOKENIZER_PATH
Path to HF Tokenizer.
--ftfy Use ftfy to clean text
output data:
--output-prefix OUTPUT_PREFIX
Path to binary output file without suffix
--dataset-impl {lazy,cached,mmap}
Dataset implementation to use. Default: mmap
runtime:
--workers WORKERS Number of worker processes to launch
--log-interval LOG_INTERVAL
Interval between progress updates
multinode_prepare_data.sh
Does the same but distributed over multiple nodes.
# USAGE:
# This script allows you to prepare your dataset using multiple nodes by chunking the individual files and distributed the chunks
# over the processes.
# This bash script takes a single text file as input argument.
# The text file contains a valid filepath in each line, leading to a jsonl-file.
# Furthermore an environment variable for the rank and the world size needs to be set.
# These default to the SLURM and OMPI variables in this order of priority, but they can be set manually as well
# using the variables $RANK and $WORLD_SIZE, which will overwrite the cluster-specific variables.
# You can also add all arguments of the prepare_data.py script to this script and it will simply pass them through.
corpora.py
Has information for common datasets. Primarily meant for use in top-level prepare_data.py
script.