# Data Scripts ## `preprocess_data.py` Takes a raw dataset, splits it up, tokenizes it, and saves it as numpy files that can be memmapped and used efficiently by the training code. ``` usage: preprocess_data.py [-h] --input INPUT [--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]] [--num-docs NUM_DOCS] --tokenizer-type {HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer,TiktokenTokenizer,SPMTokenizer} [--vocab-file VOCAB_FILE] [--merge-file MERGE_FILE] [--append-eod] [--ftfy] --output-prefix OUTPUT_PREFIX [--dataset-impl {lazy,cached,mmap}] [--workers WORKERS] [--log-interval LOG_INTERVAL] options: -h, --help show this help message and exit input data: --input INPUT Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated list --jsonl-keys JSONL_KEYS [JSONL_KEYS ...] space separate listed of keys to extract from jsonl. Default: text --num-docs NUM_DOCS Optional: Number of documents in the input data (if known) for an accurate progress bar. tokenizer: --tokenizer-type {HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer,TiktokenTokenizer,SPMTokenizer} What type of tokenizer to use. --vocab-file VOCAB_FILE Path to the vocab file --merge-file MERGE_FILE Path to the BPE merge file (if necessary). --append-eod Append an token to the end of a document. --ftfy Use ftfy to clean text output data: --output-prefix OUTPUT_PREFIX Path to binary output file without suffix --dataset-impl {lazy,cached,mmap} Dataset implementation to use. Default: mmap runtime: --workers WORKERS Number of worker processes to launch --log-interval LOG_INTERVAL Interval between progress updates ``` ## `preprocess_data_with_mask.py` Does the same but also creates `label` tensors if the dataset has labels. N.B. If using this, you **must** specify your data when training/finetuning with the following configs ```json "train_data_paths": ["train_documents"], "test_data_paths": ["test_documents"], "valid_data_paths": ["test_documents"], "label_data_paths": ["label_documents"] ``` the `"data_path"` option will not work with `"label_data_paths"`. ``` usage: preprocess_data_with_mask.py [-h] --input INPUT [--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]] [--mask-before-token MASK_BEFORE_TOKEN] [--num-docs NUM_DOCS] --tokenizer-type {HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer} [--vocab-file VOCAB_FILE] [--merge-file MERGE_FILE] [--append-eod] [--ftfy] --output-prefix OUTPUT_PREFIX [--dataset-impl {lazy,cached,mmap}] [--workers WORKERS] [--log-interval LOG_INTERVAL] options: -h, --help show this help message and exit input data: --input INPUT Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated list --jsonl-keys JSONL_KEYS [JSONL_KEYS ...] space separate listed of keys to extract from jsonl. Defa --mask-before-token MASK_BEFORE_TOKEN apply loss masks before certain token(s). If multi-token pattern, separate by commas without space, e.g. --mask-before-token 0,1,1270 to use the token pattern [0,1,1270]. --num-docs NUM_DOCS Optional: Number of documents in the input data (if known) for an accurate progress bar. tokenizer: --tokenizer-type {HFGPT2Tokenizer,HFTokenizer,GPT2BPETokenizer,CharLevelTokenizer} What type of tokenizer to use. --vocab-file VOCAB_FILE Path to the vocab file --merge-file MERGE_FILE Path to the BPE merge file (if necessary). --append-eod Append an token to the end of a document. --ftfy Use ftfy to clean text output data: --output-prefix OUTPUT_PREFIX Path to binary output file without suffix --dataset-impl {lazy,cached,mmap} Dataset implementation to use. Default: mmap runtime: --workers WORKERS Number of worker processes to launch --log-interval LOG_INTERVAL Interval between progress updates ``` ## `preprocess_data_with_chat_template.py` Similar, but uses huggingface's [chat templates](https://huggingface.co/docs/transformers/main/en/chat_templating) to tokenize the data to support multiturn and more complicated use cases. N.B. If using this, you **must** specify your data when training/finetuning with the following configs ```json "train_data_paths": ["train_documents"], "test_data_paths": ["test_documents"], "valid_data_paths": ["test_documents"], "label_data_paths": ["label_documents"] ``` the `"data_path"` option will not work with `"label_data_paths"`. ``` usage: preprocess_data_with_chat_template.py [-h] --input INPUT [--jsonl-keys JSONL_KEYS [JSONL_KEYS ...]] [--no-mask] [--generation-role GENERATION_ROLE] [--only-last] [--num-docs NUM_DOCS] --tokenizer-path TOKENIZER_PATH [--ftfy] --output-prefix OUTPUT_PREFIX [--dataset-impl {lazy,cached,mmap}] [--workers WORKERS] [--log-interval LOG_INTERVAL] options: -h, --help show this help message and exit input data: --input INPUT Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated list --jsonl-keys JSONL_KEYS [JSONL_KEYS ...] space separate listed of keys to extract from jsonl. Default: text --no-mask If set, this will not mask any tokens in the input data. --generation-role GENERATION_ROLE The role of the model generating the chat, usually 'assistant'. Default: assistant --only-last If set, this will mask everything except the last turn in the chat. --num-docs NUM_DOCS Optional: Number of documents in the input data (if known) for an accurate progress bar. tokenizer: --tokenizer-path TOKENIZER_PATH Path to HF Tokenizer. --ftfy Use ftfy to clean text output data: --output-prefix OUTPUT_PREFIX Path to binary output file without suffix --dataset-impl {lazy,cached,mmap} Dataset implementation to use. Default: mmap runtime: --workers WORKERS Number of worker processes to launch --log-interval LOG_INTERVAL Interval between progress updates ``` ## `multinode_prepare_data.sh` Does the same but distributed over multiple nodes. ``` # USAGE: # This script allows you to prepare your dataset using multiple nodes by chunking the individual files and distributed the chunks # over the processes. # This bash script takes a single text file as input argument. # The text file contains a valid filepath in each line, leading to a jsonl-file. # Furthermore an environment variable for the rank and the world size needs to be set. # These default to the SLURM and OMPI variables in this order of priority, but they can be set manually as well # using the variables $RANK and $WORLD_SIZE, which will overwrite the cluster-specific variables. # You can also add all arguments of the prepare_data.py script to this script and it will simply pass them through. ``` ## `corpora.py` Has information for common datasets. Primarily meant for use in top-level `prepare_data.py` script.