|
--- |
|
base_model: akhooli/sbert_ar_nli_500k_norm |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 'لقد تم إنجازه من قبل ولكن لم يكن بهذه الوضوح أو بهذا القدر من الشغف. ' |
|
- text: 'بالنسبة لي، هذه الأوبرا ليست مفضلة، لذا فقد مر وقت طويل قبل أن تغني السيدة |
|
السمينة. ' |
|
- text: 'جودينج وكوبورن كلاهما فائزان بجائزة الأوسكار، وهي حقيقة تبدو غير قابلة للتصور |
|
عندما تشاهدهما وهما يشقان طريقهما بطريقة خرقاء عبر كلاب الثلج. ' |
|
- text: 'يتمتع الفيلم بلمعان عالي اللمعان وصدمات عالية الأوكتان التي تتوقعها من دي |
|
بالما، ولكن ما يجعله مؤثرًا هو أنه أيضًا أحد أذكى التعبيرات وأكثرها إمتاعًا عن |
|
الحب السينمائي الخالص الذي يأتي من مخرج أمريكي منذ سنوات . ' |
|
- text: 'ولكنه يأتي أيضًا مع الكسل والغطرسة التي يتميز بها الشيء الذي يعرف بالفعل |
|
أنه فاز. ' |
|
inference: true |
|
model-index: |
|
- name: SetFit with akhooli/sbert_ar_nli_500k_norm |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8783783783783784 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with akhooli/sbert_ar_nli_500k_norm |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. |
|
This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. |
|
A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
Normalize the text before classifying as the model uses normalized text. Here's how to use the model: |
|
```python |
|
pip install setfit |
|
from setfit import SetFitModel |
|
from unicodedata import normalize |
|
|
|
# Download model from Hub |
|
model = SetFitModel.from_pretrained("akhooli/setfit_ar_sst2") |
|
# Run inference |
|
queries = [ |
|
"يغلي الماء عند 100 درجة مئوية", |
|
"فعلا لقد أحببت ذلك الفيلم", |
|
"🤮 اﻷناناس مع البيتزا؟ إنه غير محبذ", |
|
"رأيت أناسا بائسين في الطريق", |
|
"لم يعجبني المطعم رغم أن السعر مقبول", |
|
"من باب جبر الخاطر هذه 3 نجوم لتقييم الخدمة", |
|
"من باب جبر الخواطر، هذه نجمة واحدة لخدمة ﻻ تستحق" |
|
] |
|
queries_n = [normalize('NFKC', query) for query in queries] |
|
preds = model.predict(queries_n) |
|
print(preds) |
|
# if you want to see the probabilities for each label |
|
probas = model.predict_proba(queries_n) |
|
print(probas) |
|
``` |
|
The rest of this card is auto-generated. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| negative | <ul><li>'إنه أمر رصاصي ويمكن التنبؤ به، ويفتقر إلى الضحك. '</li><li>'لا يعرف مايرز أبدًا متى يترك الكمامة تموت؛ وهكذا، فإننا نتعرض لنكات طويلة ومذهلة حول البراز والتبول تلو الأخرى. '</li><li>'غزل رعب ملحمي مبتذل ومبتذل ينتهي به الأمر إلى أن يكون أكثر غباءً من عنوانه. '</li></ul> | |
|
| positive | <ul><li>'أوصي بشدة أن يشاهد الجميع هذا الفيلم، لأهميته التاريخية وحدها. '</li><li>'المخرج كابور هو مخرج أفلام يتمتع بميل حقيقي للمناظر الطبيعية والمغامرات الملحمية، وهذا فيلم أفضل من فيلمه السابق باللغة الإنجليزية، إليزابيث الذي نال الثناء. '</li><li>'فيلم نوير صغير غير تقليدي، قصة جريمة منظمة تتضمن واحدة من أغرب قصص الحب التي يمكن أن تراها على الإطلاق. '</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8784 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("akhooli/setfit") |
|
# Run inference |
|
preds = model("لقد تم إنجازه من قبل ولكن لم يكن بهذه الوضوح أو بهذا القدر من الشغف. ") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 2 | 16.2702 | 52 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| negative | 2500 | |
|
| positive | 2500 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (64, 64) |
|
- num_epochs: (1, 1) |
|
- max_steps: 5000 |
|
- sampling_strategy: undersampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- run_name: setfit_sst2_5k |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0004 | 1 | 0.3009 | - | |
|
| 0.04 | 100 | 0.2802 | - | |
|
| 0.08 | 200 | 0.2312 | - | |
|
| 0.12 | 300 | 0.1462 | - | |
|
| 0.16 | 400 | 0.0838 | - | |
|
| 0.2 | 500 | 0.0463 | - | |
|
| 0.24 | 600 | 0.033 | - | |
|
| 0.28 | 700 | 0.0206 | - | |
|
| 0.32 | 800 | 0.0195 | - | |
|
| 0.36 | 900 | 0.0174 | - | |
|
| 0.4 | 1000 | 0.013 | - | |
|
| 0.44 | 1100 | 0.0113 | - | |
|
| 0.48 | 1200 | 0.0095 | - | |
|
| 0.52 | 1300 | 0.0088 | - | |
|
| 0.56 | 1400 | 0.0075 | - | |
|
| 0.6 | 1500 | 0.0083 | - | |
|
| 0.64 | 1600 | 0.0061 | - | |
|
| 0.68 | 1700 | 0.0071 | - | |
|
| 0.72 | 1800 | 0.0069 | - | |
|
| 0.76 | 1900 | 0.0054 | - | |
|
| 0.8 | 2000 | 0.007 | - | |
|
| 0.84 | 2100 | 0.006 | - | |
|
| 0.88 | 2200 | 0.0051 | - | |
|
| 0.92 | 2300 | 0.0046 | - | |
|
| 0.96 | 2400 | 0.0041 | - | |
|
| 1.0 | 2500 | 0.0056 | - | |
|
| 1.04 | 2600 | 0.0054 | - | |
|
| 1.08 | 2700 | 0.0058 | - | |
|
| 1.12 | 2800 | 0.0043 | - | |
|
| 1.16 | 2900 | 0.0048 | - | |
|
| 1.2 | 3000 | 0.004 | - | |
|
| 1.24 | 3100 | 0.0036 | - | |
|
| 1.28 | 3200 | 0.0042 | - | |
|
| 1.32 | 3300 | 0.0041 | - | |
|
| 1.3600 | 3400 | 0.004 | - | |
|
| 1.4 | 3500 | 0.0029 | - | |
|
| 1.44 | 3600 | 0.0047 | - | |
|
| 1.48 | 3700 | 0.0041 | - | |
|
| 1.52 | 3800 | 0.0026 | - | |
|
| 1.56 | 3900 | 0.0029 | - | |
|
| 1.6 | 4000 | 0.0027 | - | |
|
| 1.6400 | 4100 | 0.0027 | - | |
|
| 1.6800 | 4200 | 0.0033 | - | |
|
| 1.72 | 4300 | 0.0031 | - | |
|
| 1.76 | 4400 | 0.003 | - | |
|
| 1.8 | 4500 | 0.0024 | - | |
|
| 1.8400 | 4600 | 0.0028 | - | |
|
| 1.88 | 4700 | 0.002 | - | |
|
| 1.92 | 4800 | 0.0017 | - | |
|
| 1.96 | 4900 | 0.0023 | - | |
|
| 2.0 | 5000 | 0.0014 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- SetFit: 1.2.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.45.1 |
|
- PyTorch: 2.4.0 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |