akhooli commited on
Commit
c9b071c
1 Parent(s): b261c6c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -2
README.md CHANGED
@@ -42,10 +42,30 @@ model-index:
42
  This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification.
43
  This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model.
44
  A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
45
- Normalize the text before classifying as the model uses normalized text:
46
  ```python
 
 
47
  from unicodedata import normalize
48
- query_n = normalize('NFKC', query)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  ```
50
  The rest of this card is auto-generated.
51
 
 
42
  This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification.
43
  This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model.
44
  A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
45
+ Normalize the text before classifying as the model uses normalized text. Here's how to use the model:
46
  ```python
47
+ pip install setfit
48
+ from setfit import SetFitModel
49
  from unicodedata import normalize
50
+
51
+ # Download model from Hub
52
+ model = SetFitModel.from_pretrained("akhooli/setfit_ar_sst2")
53
+ # Run inference
54
+ queries = [
55
+ "يغلي الماء عند 100 درجة مئوية",
56
+ "فعلا لقد أحببت ذلك الفيلم",
57
+ "🤮 اﻷناناس مع البيتزا؟ إنه غير محبذ",
58
+ "رأيت أناسا بائسين في الطريق",
59
+ "لم يعجبني المطعم رغم أن السعر مقبول",
60
+ "من باب جبر الخاطر هذه 3 نجوم لتقييم الخدمة",
61
+ "من باب جبر الخواطر، هذه نجمة واحدة لخدمة ﻻ تستحق"
62
+ ]
63
+ queries_n = [normalize('NFKC', query) for query in queries]
64
+ preds = model.predict(queries_n)
65
+ print(preds)
66
+ # if you want to see the probabilities for each label
67
+ probas = model.predict_proba(queries_n)
68
+ print(probas)
69
  ```
70
  The rest of this card is auto-generated.
71