Text Classification
Transformers
PyTorch
Italian
bert
emotion-analysis
Inference Endpoints
it-emotion-analyzer / README.md
system's picture
system HF staff
Commit From AutoTrain
01a26a8
|
raw
history blame
1.33 kB
metadata
tags:
  - autotrain
  - text-classification
language:
  - it
widget:
  - text: I love AutoTrain 🤗
datasets:
  - tradicio/autotrain-data-it-emotion-analysis
co2_eq_emissions:
  emissions: 0.4489187526120041

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 43095109829
  • CO2 Emissions (in grams): 0.4489

Validation Metrics

  • Loss: 0.566
  • Accuracy: 0.828
  • Macro F1: 0.828
  • Micro F1: 0.828
  • Weighted F1: 0.828
  • Macro Precision: 0.828
  • Micro Precision: 0.828
  • Weighted Precision: 0.828
  • Macro Recall: 0.828
  • Micro Recall: 0.828
  • Weighted Recall: 0.828

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/tradicio/autotrain-it-emotion-analysis-43095109829

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("tradicio/autotrain-it-emotion-analysis-43095109829", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("tradicio/autotrain-it-emotion-analysis-43095109829", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)