Text Classification
Transformers
PyTorch
Italian
bert
emotion-analysis
Inference Endpoints

IT-EMOTION-ANALYZER

This is a model for emotion analysis of italian sentences trained on a translated dataset by Google Translator. It maps sentences & paragraphs with 6 emotions which are:

  • 0: sadness
  • 1: joy
  • 2: love
  • 3: anger
  • 4: fear
  • 5: surprise

Model in action

Using this model becomes easy when you have transformers installed:

pip install -U transformers

Then you can use the model like this:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline

sentences = ["Questa è una frase triste", "Questa è una frase felice", "Questa è una frase di stupore"]

tokenizer = AutoTokenizer.from_pretrained("aiknowyou/it-emotion-analyzer")
model = AutoModelForSequenceClassification.from_pretrained("aiknowyou/it-emotion-analyzer")

emotion_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
emotion_analysis(sentences)

Obtaining the following result:

[{'label': '0', 'score': 0.9481984972953796},
 {'label': '1', 'score': 0.9299975037574768},
 {'label': '5', 'score': 0.9543816447257996}]

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 43095109829
  • CO2 Emissions (in grams): 0.4489

Validation Metrics

  • Loss: 0.566
  • Accuracy: 0.828
  • Macro F1: 0.828
  • Micro F1: 0.828
  • Weighted F1: 0.828
  • Macro Precision: 0.828
  • Micro Precision: 0.828
  • Weighted Precision: 0.828
  • Macro Recall: 0.828
  • Micro Recall: 0.828
  • Weighted Recall: 0.828
Downloads last month
121
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aiknowyou/it-emotion-analyzer

Finetunes
3 models

Dataset used to train aiknowyou/it-emotion-analyzer