ahmedhassan7030's picture
End of training
8d57a6c verified
metadata
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
model-index:
  - name: speecht5_finetuned_commonvoice_dv
    results: []

speecht5_finetuned_commonvoice_dv

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 384
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
10.3761 3.2222 100 0.7551
8.3203 6.4444 200 0.5722
7.3507 9.6667 300 0.5280
6.9851 12.8889 400 0.5115
6.6688 16.1270 500 0.4952
6.479 19.3492 600 0.4871
6.4798 22.5714 700 0.4771
6.2714 25.7937 800 0.4759
6.2132 29.0317 900 0.4700
6.1966 32.2540 1000 0.4652
6.1389 35.4762 1100 0.4638
6.0647 38.6984 1200 0.4603
6.032 41.9206 1300 0.4602
6.0107 45.1587 1400 0.4552
5.9762 48.3810 1500 0.4522
6.0347 51.6032 1600 0.4507
5.9424 54.8254 1700 0.4508
5.9278 58.0635 1800 0.4522
5.9332 61.2857 1900 0.4473
5.9201 64.5079 2000 0.4443
5.8812 67.7302 2100 0.4439
5.8007 70.9524 2200 0.4426
5.8262 74.1905 2300 0.4409
5.8343 77.4127 2400 0.4404
5.8536 80.6349 2500 0.4408
5.7672 83.8571 2600 0.4381
5.757 87.0952 2700 0.4381
5.7981 90.3175 2800 0.4366
5.8329 93.5397 2900 0.4371
5.7738 96.7619 3000 0.4365
5.7674 99.9841 3100 0.4370
5.7987 103.2222 3200 0.4356
5.6883 106.4444 3300 0.4351
5.7883 109.6667 3400 0.4374
5.7269 112.8889 3500 0.4345
5.723 116.1270 3600 0.4336
5.7776 119.3492 3700 0.4354
5.724 122.5714 3800 0.4342
5.7235 125.7937 3900 0.4334
5.7067 129.0317 4000 0.4334

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0